• 제목/요약/키워드: Congruent number problem

검색결과 2건 처리시간 0.014초

A METHOD OF COMPUTATIONS OF CONGRUENT NUMBERS AND ELLIPTIC CURVES

  • Park, Jong-Youll;Lee, Heon-Soo
    • 호남수학학술지
    • /
    • 제32권1호
    • /
    • pp.177-192
    • /
    • 2010
  • We study the concepts of congruent number problems and elliptic curves. We research the structure of the group of elliptic curves and find out a method of the computation of L($E_n$, 1) and L'($E_n$, 1) by using SAGE program. In this paper, we obtain the first few congruent numbers for n ${\leq}$ 2500.

타원곡선의 역사 개관 (A Historical Overview of Elliptic Curves)

  • 고영미;이상욱
    • 한국수학사학회지
    • /
    • 제28권2호
    • /
    • pp.85-102
    • /
    • 2015
  • Elliptic curves are a common theme among various fields of mathematics, such as number theory, algebraic geometry, complex analysis, cryptography, and mathematical physics. In the history of elliptic curves, we can find number theoretic problems on the one hand, and complex function theoretic ones on the other. The elliptic curve theory is a synthesis of those two indeed. As an overview of the history of elliptic curves, we survey the Diophantine equations of 3rd degree and the congruent number problem as some of number theoretic trails of elliptic curves. We discuss elliptic integrals and elliptic functions, from which we get a glimpse of idea where the name 'elliptic curve' came from. We explain how the solution of Diophantine equations of 3rd degree and elliptic functions are related. Finally we outline the BSD conjecture, one of the 7 millennium problems proposed by the Clay Math Institute, as an important problem concerning elliptic curves.