References
- A. Ash, R. Gross, Elliptic Tales, Princeton University Press, 2014.
- M. Barnes, Abel on Elliptic Integrals: A Translation. http://www.maa.org/publications/periodicals/convergence/abel_on_elliptic_integrals_a_translation
- M. Barsagade, S. Meshram, Overview of history of elliptic curves and its use in cryptography, Int. Jour. of Scientific & Engineering Research, 5(4) (2014), 467-470. https://doi.org/10.14299/ijser.2014.02.003
- I. Bashmakova, Arithmetic of algebraic curves from Diophantus to Poincare, Historia Mathematica 8 (1981), 393-416. https://doi.org/10.1016/0315-0860(81)90050-1
- M. Bhargava, A. Shankar, The average size of the 5-Selmar group of elliptic curves is 6, and the average rank is less than 1, 2013. http://arxiv.org/pdf/1312.7859.pdf
- U. Bottazzini, J. Gray, Hidden Harmony- Geometric Fantasies: The Rise of Complex Function Theory, Springer, 2013.
- E. Brown, Three Fermat trails to elliptic curves, The College Math. Jour., 31(3) (2000), MAA, 162-172. https://doi.org/10.2307/2687483
- V. Chandrasekar, The congruent number problem, Resonance(Aug. 1998), 33-45.
- J. Coates, Congruent number problem, Pure and Applied Mathematics Quarterly 1(1) (2005), 14-27. https://doi.org/10.4310/PAMQ.2005.v1.n1.a2
- K. Conrad, The congruent number problem. http://www.math.uconn.edu/-kconrad
- K. Devlin, The Millenium Problems, Basic Books, 2002.
- G. Harder, D. Zagier, The conjecture of Birch and Swinnerton-Dyer. people.mpim-bonn.mpg.de/zagier/files/tex/BSDwHarder/fulltext.pdf
- P. Hewitt, A brief history of elliptic curves, 2005. http://livetoad.org/Courses/Documents/132d/Notes/history_of_elliptic_curves.pdf
- L. Mordell, On the rational solutions of the indeterminate equations of the third and fourth degrees, Proc. Cambridge Philos. Soc. 21 (1922), 179-192.
- J. Nekovar, Elliptic functions and elliptic curves (lecture note). http://webusers.imj-prg.fr/-jan.nekovar/co/ln/el/el1.pdf
- A. Rice, E. Brown, Why ellipses are not elliptic curves, Math. Mag. 85 (2012), 163-176 https://doi.org/10.4169/math.mag.85.3.163
- K. Rubin, A. Silverberg, Ranks of elliptic curves, Bulletin of the AMS 39(4) (2002), 455-474. https://doi.org/10.1090/S0273-0979-02-00952-7
- N. Schappacher, Diophantus of Alexandria: a Text and its History, 2005. http://www-irma.u-strasbg.fr/-schappa/NSch/Publications-files/Dioph.pdf
- C. L. Siegel, Elliptic Functions and Uniformization Theory, Topics in Complex Function Theory, Volume I, Wiley-Interscience, 1988.
- J. Silverman, J. Tate, Rational Points on Elliptic Curves, UTM, Springer, 1992.
- N. Stephens, Congruence properties of congruent numbers, Bull. London Math. Soc. 7 (1975), 182-184. https://doi.org/10.1112/blms/7.2.182
- J. Stillwell, The evolution of elliptic curves, Amer. Math. Monthly 102(9) (1995), 831-837. https://doi.org/10.2307/2974515
- J. Stillwell, Mathematics and Its History, 3rd ed., Springer, 2010.
- A. Sutherland, Elliptic curves, 2013. http://oct.mit.edu/courses/mathematics/\18-783-elliptic-curves-spring-2013/lecture-notes
- V. Tkachev, Elliptic functions: Introduction course (lecture note). http://www.math.kth.se/-tkachev
- J. Tunnell, A classical Diophantine problem and modular forms of weight 3/2, Inventiones Math. 72 (1883), 323-334.
- A. Wiles, The Birch and Swiinerton-Dyer conjecture, In James Carlson, Arthur Jaffe, Andrew Wiles, The Millenium Prize Problems, AMS, 2006, 31-44.