• Title/Summary/Keyword: Confine-Pressure

Search Result 15, Processing Time 0.029 seconds

Effect of Ground Confine Pressure on Pullout Resistance of Piles Using Model Experiment (말뚝의 인발저항에 대한 지중 구속압 영향 분석을 위한 실내모형실험)

  • Seung-Kyong You;Gigwon Hong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.4
    • /
    • pp.27-34
    • /
    • 2023
  • This paper describes the results of a pile pullout test considering the confine pressure and fines content of the ground. The Pullout tests were conducted under various ground conditions using model piles. The effect of ground confine pressure on the pullout resistance and the pullout resistance parameters of the pile were evaluated based on the experimental results. The results of pullout test showed that the maximum pullout resistance occurred at a pullout displacement of about 7mm to 9mm, regardless of the fines content and the confine pressure of the ground. The maximum pullout resistance of the pile decreased as the fines content of the ground increased, and this trend became clearer as the confine pressure increased. The pullout resistance calculated by theoretical formula was compared with the experimental results in order to ensure the reliability of the pullout test results. The comparative results showed that the experimental and theoretical values showed a tendency to decrease the pullout resistance as the fines content increased, in all confine pressure conditions. The analysis result of the pullout resistance parameters confirmed that the pullout resistance was greatly influenced by the adhesion compared to the interface friction angle, as the fines content of the ground around the pile increased.

The Study on Pressure Confine Effect of Blast Stemming Material and Plug Device Using Numerical Analysis Technique (수치해석 기법을 이용한 발파전색재료 및 플러그 장치의 폭발압 저항 효과에 관한 연구)

  • Ko, Younghun;Kwak, Kiseok;Seo, Seunghwan;Jeong, Youngjun;Kim, Sik;Chung, Moonkyung
    • Explosives and Blasting
    • /
    • v.40 no.2
    • /
    • pp.1-14
    • /
    • 2022
  • Numerical simulation is the most widely used methods for evaluating blasting performance. This study, conducted the numerical analysis of shock chamber model to evaluate the pressure confine effect of the stemming material and plug device. The stemming effect was compared and evaluated with that of the STF-based stemming material currently under development and sand, which is a commonly used blast stemming material. Furthermore, to verify of enhancement the confine effect inside blast hole pressure, three types of stemming plugs were adopted for the numerical analysis. The numerical simulation results revealed that the STF-based stemming materials were superior to the general stemming material. Also, It is evaluated that the STF-based stemming and Plug system can not only prevent detonation gas from overflowing the borehole prematurely, but also prolong the action time and scope of detonation gas in the borehole effective.

Characteristics of the Low Pressure Plasma

  • Bae, In-Sik;Na, Byeong-Geun;Seol, Yu-Bin;Song, Ho-Hyeon;Yu, Sin-Jae;Jang, Hong-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.235.2-235.2
    • /
    • 2014
  • Plasma hardly grows in low pressure because of lack of collision. Especially, in extremely low pressure like 1 mTorr, the experiment scale is far larger than mean free path therefore plasma is hardly generated in such low pressure. But low pressure plasma has useful properties like low damage or fine sputtering process because it has typically low electron density. In here, thermal electron is used to make breakdown in low pressure easily and cylindrical geometry is used to help discharge easily. And we changed magnetic field strength to control electron density or temperature. In low pressure, density and temperature behavior is very interesting so its characteristics are examined here.

  • PDF

Settlement Reduction Effect of the Geogrid Reinforced Stone Column System (고강도 지오그리드로 보강된 Stone Column 공법의 침하감소효과)

  • Park, Sis-Am;Cho, Sung-Han;Yoo, Chung-Sik;Lee, Dae-Young
    • Journal of the Korean Geosynthetics Society
    • /
    • v.5 no.1
    • /
    • pp.15-23
    • /
    • 2006
  • Sand Compaction Pile and Stone Column method have been used in widely during several decades as a technique to reinforce soft soils and increasing ultimate bearing capacity, accelerate consolidation settlement of the foundation ground. Stone column method, making a compaction pile using crushed stone, is a soft ground improvement method. However, stone column method is difficult to apply to the ground which is not mobilized enough lateral confine pressure because no bulging failure resistance. Hence, in present study, development the geogrid reinforced stone column system for settlement reduction and wide range of application of stone columns. To develop this system, triaxial compression tests were conducted for evaluation which is about behavior characteristics of stone column on replacement rate and confine pressure. Then, 3-dimensional numerical analysis were evaluated for application of the GRSC (geogrid reinforced stone column) system as evaluate behavior characteristics and settlement reduction effect of stone column reinforced by geogrid on types and reinforcing depth change of geogrid.

  • PDF

Study on Shear Wave Velocity of Fill Dam Core zone using Surface Wave Method (표면파탐사에 의한 필댐 코어죤의 전단파속도 연구)

  • Kwon, Hyek-Kee;Shin, Eun-Chul
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.209-218
    • /
    • 2009
  • In this study, properties of shear wave velocity of core zone in filldams are analyzed. Shear wave velocity is derived using analysis of surface wave method that can be used nondestructively on the surface of filldams. These values are acquired through the tests for the core zone of six filldams by SASW and HWAW methods. Existing 2 more results are added. Shear wave velocity according to the depth and confining pressure are estimated, respectively. These analytical results are compared with the frequently used empirical method by Sawada and Takahashi.

  • PDF

Effects of Air Drain and Confined Conditions to Infiltration Rate in Unsaturated Soils (불포화 토양에서 공기의 배출/제한이 침투속도에 미치는 영향)

  • Kim, Sangrae;Ki, Jaehong;Kim, Youngjin;Han, Mooyoung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.6
    • /
    • pp.681-687
    • /
    • 2008
  • It is well known that the water infiltration rate depends on soil properties such as soil water content, water head, capillary suction, density, hydraulic conductivity, and porosity. However, most of proposed infiltration models assume that the air phase is continuous and in equilibrium with the atmosphere or air compression and air entrapment on infiltration was not considered. This study presents experimental results on unsaturated water infiltration to relate air entrapment and hydraulic conductivity function based on soil air properties. The objectives of this study were to measure change of soil air pressure ahead of wetting front under air drain and air confined condition to find the confined air effect on infiltration rate, to reduce the entrapped air volume related with soil air pressure to increase the soil permeability, and to make a basis of infiltration process model for the purpose of improvement of infiltration rate in the homogeneous soil column. The results of the work show that soil air pressure increases according to increasement of the saturated soil depth rather than the wetting front depth during infiltration process.

Improving Sensitivity of SAW-based Pressure Sensor with Metal Ground Shielding over Cavity

  • Lee, Kee-Keun;Hwang, Jeang-Su;Wang, Wen;Kim, Geun-Young;Yang, Sang-Sik
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.3 s.36
    • /
    • pp.267-274
    • /
    • 2005
  • This paper presents the fabrication of surface acoustic wave (SAW)-based pressure sensor for long-term stable mechanical compression force measurement. SAW pressure sensor has many attractive features for practical pressure measurement: no battery requirement, wireless pressure detection especially at hazardous environments, and easy other functionality integrations such as temperature, humidity, and RFID. A $41^{\circ}$ YX $LiNbO_3$ piezoelectric substrate was used because of its high SAW propagation velocity and large values of electromechanical coupling factors $K^2$. A silicon substrate with $\~200{\mu}m$ deep cavity was bonded to the diaphragm with epoxy, in which gold was covered all over the inner cavity in order to confine electromagnetic energy inside the sensor, and provide good isolation of the device from its environment. The reflection coefficient $S_{11}$ was measured using network analyzer. High S/N ratio, sharp reflected peaks, and clear separation between the peaks were observed. As a mechanical compression force was applied to the diaphragm from top with extremely sharp object, the diaphragm was bended, resulting in the phase shifts of the reflected peaks. The phase shifts were modulated depending on the amount of applied mechanical compression force. The measured $S_{11}$ results showed a good agreement with simulated results obtained from equivalent admittance circuit modeling.

  • PDF

Study on Shear Wave Velocity of Fill Dam rock zone using Surface Wave Method (표면파 탐사에 의한 필댐 사력죤의 전단파속도 산정 연구)

  • Kwon, Hyek-Kee;Shin, Eun-Chul
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.5
    • /
    • pp.1-9
    • /
    • 2009
  • In this study, the properties of shear wave velocity of coarse gravel in filldams are analyzed. Shear wave velocity is derived using the surface wave analysis method, which can be used nondestructively on the surface of filldams. These values are acquired through the tests for the rock zone of six filldams by SASW and HWAW methods. These analytical results are compared with results obtained through the frequently-used empirical method of Sawada and Takahashi.

A Study on the Glow Discharge Characteristics of Facing Target Plasma Process (대향 음극형 플라즈마 프로세스의 글로우 방전특성에 관한 연구)

  • Park, Chung-Hoo;Cho, Jung-Soo;Kim, Kwang-Hwa;Sung, Youl-Mool
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.3
    • /
    • pp.478-484
    • /
    • 1994
  • Facing target dc sputtering system developed by Hoshi et al. has simple configuration and high deposition rate under moderate substrate temperature in the range of pressure 5x10S0-4T - 1x10S0-2T torr. In this system, magnetic field should be applied perpendicular to the target surface in order to confine high energy secondary electrons between two targets. Because of this magnetic field, the glow discharge characteristics are very different from dc planar diode system showing some unstable discharge region. In this paper, the glow discharge characteristics of this system have been studied under the condition of Ti targets with Ar-NS12T(10%) as working gas. It is found that this system has stable discharge region under the discharge current density of 15-30(mA/cmS02T). The plasma density and electron temperature are in the range of 10S010Y - 10S011T(CMS0-3T) and 2.5-5(eV), respectively.

A Study on the Geogrid Reinforced Stone Column System for Settlement Reduction Effect (침하저감효과를 위한 고강도 지오그리드 보강Stone Column 공법에 관한 연구)

  • Park, Si-Sam;Lee, Hoon-Hyun;Yoo, Chung-Sik;Lee, Dae-Young;Lee, Boo-Rak
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.838-845
    • /
    • 2006
  • Recently construction work in Korea, demands of favorable condition ground had been increased with industrialization acceleration and economic growth. However, because of limited land space, it was so hard to ensure favorable condition grounds that construction work proceeds until soft ground area on plans of road, railroad and industrial complex. In this case, soft ground improvement was required such as a stone column method. Stone column method, making a compaction pile using crushed stone, is a soft ground improvement method. However, stone column method is difficult to apply to the ground which is not mobilized enough lateral confine pressure because no bulging failure resistance. Hence, in present study, evaluates the stone columns reinforced by geogrid for settlement reduction and wide range of application of stone columns. Triaxial compression tests were conducted for evaluation which is about behavior characteristics of stone column on replacement rate. Then, 3-dimensional numerical analysis were conducted for application of stone column reinforced by geogrid as evaluate behavior characteristics and settlement reduction effect of stone column reinforced by geogrid on reinforcing depth change of geogrid.

  • PDF