• Title/Summary/Keyword: Configuration design method

Search Result 914, Processing Time 0.026 seconds

Robust wireless sensor network configuration design for structural health monitoring with optimal information-energy tradeoff

  • Xiao-Han Hao;Sin-Chi Kuok;Ka-Veng Yuen
    • Smart Structures and Systems
    • /
    • v.33 no.6
    • /
    • pp.465-482
    • /
    • 2024
  • In this paper, a robust wireless sensor network configuration design method is proposed to develop the optimal configuration under the consideration of sensor failure and energy consumption. A malfunctioned sensor in a wireless sensor network may lead to data transmission failure of the entire sensing cluster, inducing severe deterioration in system identification performance. The proposed method determines a wireless sensor network configuration that is robust against sensor failure. By utilizing Bayesian inference, we introduce a robust indicator to evaluate the impact on estimation accuracy of sensor configurations with various malfunctioned sensors. Moreover, a network formation strategy is proposed to optimize the energy efficiency of the wireless sensor network configuration. Therefore, the resultant robust wireless sensor network configuration can operate with the minimum energy consumption while the measurement information of the sensor network with malfunctioned sensors can be guaranteed. The proposed method is illustrated by designing the robust wireless sensor network configurations of a truss model and a bridge model.

Optimal Coil Configuration Design Methodology Using the Concept of Equivalent Magnetizing Current (등가자화전류를 이용한 최적코일형상 설계방법)

  • Kim, Woo-Chul;Kim, Min-Tae;Kim, Yoon-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.1 s.256
    • /
    • pp.43-49
    • /
    • 2007
  • A new electric coil design methodology using the notion of topology optimization is developed. The specific design problem in consideration is to find optimal coil configuration that maximizes the Lorentz force under given magnetic field. Topology optimization is usually formulated using the finite element method, but the novel feature of this method is that no such partial differential equation solver is employed during the whole optimization process. The proposed methodology allows the determination of not only coil shape but also the number of coil turns which is not possible to determine by any existing topology optimization concept and to perform single coil strand identification algorithm. The specific applications are made in the design of two-dimensional fine-pattern focusing coils of an optical pickup actuator. In this method, the concept of equivalent magnetizing current is utilized to calculate the Lorentz force, and the optimal coil configuration is obtained without any initial layout. The method is capable of generating the location and shape of turns of coil. To confirm the effectiveness of the proposed method in optical pickup applications, design problems involving multipolar permanent magnets are considered.

Mechanism Design Using a Mechanism Configuration Method (메커니즘 합성을 통한 기계설계)

  • Lee, Jang-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.12
    • /
    • pp.1613-1618
    • /
    • 2011
  • Analysis method for mechanism has been fully developed and relatively easy work compared to mechanism synthesis. Developing or creating a new mechanism for a given task is a creative job. In this case, a few theories are developed such as type synthesis. However, these methods are not sufficient for mechanism designers to sufficientely take into account alternative mechanism models during the initial phase of the mechanism design process. This paper presents the configuration design of mechanisms using graphical representation in the conceptual design stage. In this stage of kinematic synthesis, one needs to select mechanisms and configure appropriately to realize the desired motion of a machine. Graphical representation of mechanisms is proposed in this paper to help a designer to be highly creative and efficient in the initial design process. It is possible to easily design and analyze the mechanism of a machine by using this method.

FAULT-TREE-BASED RISK ASSESSMENT FOR DYNAMIC CONDITION CHANGES

  • Kang, Hyun-Gook;Jang, Seung-Cheol
    • Nuclear Engineering and Technology
    • /
    • v.39 no.2
    • /
    • pp.123-128
    • /
    • 2007
  • In order to apply a static fault-tree (FT) method to a system or a plant whose configuration changes dynamically, condition gates and a post processing method are used to effectively accommodate these changes. An operator's performance change, which can be caused by these configuration changes, should also be considered to assess the risk to a plant in a more realistic manner. This study aims to develop an integrated framework to accommodate various configuration changes and their effect on an operator’s performance by using the FT model. We applied a condition-based human reliability assessment (CBHRA) method to consider various conditions endured by an operator. That is, we integrated the CBHRA method with the conventional post processing method for modeling the system configuration changes. The effect of the condition monitoring systems installed in a plant is also considered. In this study, we show an example application of the integrated framework to a probabilistic safety assessment for the shutdown phase of a nuclear power plant.

AERODYNAMIC OPTIMIZATION OF SUPERSONIC WING-NACELLE CONFIGURATION USING AN UNSTRUCTURED ADJOINT METHOD

  • Kim Hyoung-Jin;Obayashi Shigeru;Nakahashi Kazuhiro
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.60-65
    • /
    • 2000
  • An aerodynamic design method has been developed by using a three-dimensional unstructured Euler code and an adjoint code with a discrete approach. The resulting adjoint code is applied to a wing design problem of super-sonic transport with a wing-body-nacelle configuration. Hicks-Henne shape functions are adopted far the surface geometry perturbation, and the elliptic equation method is employed fer the interior grid modification during the design process. Interior grid sensitivities are neglected except those for design parameters associated with nacelle translation. The Sequential Quadratic Programming method is used to minimize the drag with constraints on the lift and airfoil thickness. Successful design results confirm validity and efficiency of the present design method.

  • PDF

Part Configuration Problem Solving for Electronic Commerce (인터넷 전자상거래 환경에서 부품구성기법 활용 연구)

  • 권순범
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1998.10a
    • /
    • pp.407-410
    • /
    • 1998
  • Configuration is a set of building block processes, a series of selection and combining parts or components which composes a whole thing. A whole thing could be such a configurable object as manufacturing product, network system, financial portfolio, system development plan, project team, etc. Configuration problem could happen during any phase of product life cycle: design, production, sales, installation, and maintenance. Configuration has long been one of cost and time consuming work, because only high salaried technical experts on product and components can do configuration. Rework for error adjustments of configurations at later process causes far much cost and time, so accurate configuration is required. Under the on-line electronic commerce environment, configuration problem solving becomes more important, because component-based sales should be done automatically on the merchant web site. Automated product search, order placement, order fulfillment and payment make that manual configuration is no longer feasible. Automated configuration means that all the constraints among components should be checked and confirmed by configuration engine automatically. In addition, technical constraints and customer preferences like price range and a specific function required should be considered. This paper gives an brief overview of configuration problems: characteristics, representation paradigms, and solving algorithms and introduce CRSP(Constraint and Rule Satisfaction Problem) method. CRSP method adopts both constraint and rule for configuration domain knowledge representation. A survey and analysis on web sites adopting configuration functions are provided. Future directions of configuration for EC is discussed in the three aspects: methodology itself, companies adopting configuration function, and electronic commerce industry.

  • PDF

DEVELOPMENT OF AERODYNAMIC SHAPE OPTIMIZATION TOOLS FOR MULTIPLE-BODY AIRCRAFT GEOMETRIES OVER TRANSONIC TURBULENT FLow REGIME (천음속 난류 유동장에서의 다중체 항공기 형상의 공력 설계 도구의 개발)

  • Lee, B.J.;Lee, J.S.;Yim, J.W.;Kim, Chong-Am
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.100-110
    • /
    • 2007
  • A new design approach for a delicate treatment of complex geometries such as a wing/body configuration is arranged using overset mesh technique under large scale computing environment for turbulent viscous flow. Various pre- and post-processing techniques which are required of overset flow analysis and sensitivity analysis codes are discussed for design optimization problems based on gradient based optimization method (GBOM). The overset flow analysis code is validated by comparing with the experimental data of a wing/body configuration (DLR-F4) from the 1st Drag Prediction Workshop (DPW-I). In order to examine the applicability of the present design tools, careful design works for the drag minimization problem of a wing/body configuration are carried out by using the developed aerodynamic shape optimization tools for the viscous flow over multiple-body aircraft geometries.

  • PDF

A Design Creation Method for Ship Configuration based on the Aesthetic Cognitive Theory

  • Shinoda, Takeshi;Fukuchi, Nobuyoshi
    • Journal of Ship and Ocean Technology
    • /
    • v.5 no.3
    • /
    • pp.14-26
    • /
    • 2001
  • The shape of an industrial product has to be determined within the constrained conditions of keeping firmly many kinds of functional and performance requirements. On the other hand, the configuration of artistic work would be created desirably using the sense of aesthetics, even if conflicting slightly with these requirements. The development of a methodology for an aesthetic design founded on human sensitivity is becoming highly desirable in recent years. In this paper, a method of measuring beauty quantitatively for an artistic evaluation if proposed using the aesthetic cognitive theory and the optimum configuration could be found by a search using the genetic algorithm. Furthermore, an expression of optimum ship appearance can be gained as graphics.

  • PDF

Design Method for Multi-Stage Gear Drive (다단 치차장치의 설계법)

  • 정태형
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.470-475
    • /
    • 1999
  • Recently as the application of gear drive increases in high-speed and high-loading, the concern of designing multi-stage gear drive is being risen. Until now however, the research of gear drive is focused on single-stage gear drive and the design depends on experiences and know-how of designer and is carried out by trial and error. This research automated the basic design and the configuration design for two and three-stage gear drives which consist of cylindrical gears. In basic design, design is executed with two design processes, which minimize the overall volume of gear, and whose results are compared each other. In configuration design, the positions of gears are determined to minimize the volume of gearbox using the result of basic design and simulated annealing algorithm.

  • PDF

Configuration sensitivity analysis of mechanical dynamics

  • Bae, Daesung
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.1
    • /
    • pp.112-119
    • /
    • 2001
  • Design sensitivity is an important is an important device in improving a mechanical system design. A continuum design consists of the shape and orientation design. This research develops the shape and orientation design sensitivity method. The configura-tion design variables of multibody systems define the shape and orientation changes. The equations of motion are directly differentiated to obtain the governing equations for the design sensitivity. The governing equation of the design sensitivity is formulated as an over determined differential algebraic equation and treated as ordinary differential equations on mani-folds. The material derivative of a domain functional is performed to obtain the sensitivity due to shape and orientation changes. The configuration design sensitivities of a fly-ball governor system and a spatial four bar mechanism are obtained using the proposed method and are validated against those obtained from the finite difference method.

  • PDF