• Title/Summary/Keyword: Configuration Accuracy

Search Result 378, Processing Time 0.037 seconds

A Tailless UAV Multidisciplinary Design Optimization Using Global Variable Fidelity Modeling

  • Tyan, Maxim;Nguyen, Nhu Van;Lee, Jae-Woo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.662-674
    • /
    • 2017
  • This paper describes the multidisciplinary design optimization (MDO) process of a tailless unmanned combat aerial vehicle (UCAV) using global variable fidelity aerodynamic analysis. The developed tailless UAV design framework combines multiple disciplines that are based on low-fidelity and empirical analysis methods. An automated high-fidelity aerodynamic analysis is efficiently integrated into the MDO framework. Global variable fidelity modeling algorithm manages the use of the high-fidelity analysis to enhance the overall accuracy of the MDO by providing the initial sampling of the design space with iterative refinement of the approximation model in the neighborhood of the optimum solution. A design formulation was established considering a specific aerodynamic, stability and control design features of a tailless aircraft configuration with a UCAV specific mission profile. Design optimization problems with low-fidelity and variable fidelity analyses were successfully solved. The objective function improvement is 14.5% and 15.9% with low and variable fidelity optimization respectively. Results also indicate that low-fidelity analysis overestimates the value of lift-to-drag ratio by 3-5%, while the variable fidelity results are equal to the high-fidelity analysis results by algorithm definition.

Arc-length and explicit methods for static analysis of prestressed concrete members

  • Mercan, Bulent;Stolarski, Henryk K.;Schultz, Arturo E.
    • Computers and Concrete
    • /
    • v.18 no.1
    • /
    • pp.17-37
    • /
    • 2016
  • This paper compares the arc-length and explicit dynamic solution methods for nonlinear finite element analysis of prestressed concrete members subjected to monotonically increasing loads. The investigations have been conducted using an L-shaped, prestressed concrete spandrel beam, selected as a highly nonlinear problem from the literature to give insight into the advantages and disadvantages of these two solution methods. Convergence problems, computational effort, and quality of the results were investigated using the commercial finite element package ABAQUS. The work in this paper demonstrates that a static analysis procedure, based on the arc-length method, provides more accurate results if it is able to converge on the solution. However, it experiences convergence problems depending upon the choice of mesh configuration and the selection of concrete post-cracking response parameters. The explicit dynamic solution procedure appears to be more robust than the arc-length method in the sense that it provides acceptable solutions in cases when the arc-length approach fails, however solution accuracy may be slightly lower and computational effort may be significantly larger. Furthermore, prestressing forces must be introduced into the finite element model in different ways for the explicit dynamic and arc-length solution procedures.

Three-dimensional finite element analysis of reinforced concrete slabs strengthened with epoxy-bonded steel plates

  • Metwally, Ibrahim M.
    • Advances in concrete construction
    • /
    • v.2 no.2
    • /
    • pp.91-108
    • /
    • 2014
  • This paper presents a nonlinear finite element analysis (FEA) in order to investigate the flexural performance of one-way slabs strengthened by epoxy-bonded steel plates. Four point loading scheme is selectively chosen. A model is developed to implement the material constitutive relationships and non-linearity. Five Slabs were modeled in FEM software using ABAQUS. One slab was unstrengthened control slab and the others were strengthened with steel plates with varying the plate thickness and configuration. In order to verify the accuracy of the numerical model, a comparison was done between the experimental results available in the literature and the proposed equations by ACI 318-11 for the calculation of ultimate load capacities of strengthened slabs, the agreement has proven to be good and FEA attained accurate results compared with ACI code. A parametric study was also carried out to investigate the influence of thickness of steel plate, strength of epoxy layer and type of strengthening plate on the performance of plated slabs. Also, the practical and technical feasibility of splitting the steel plate in strengthening process has been taken into account. For practical use, the author recommended to use bonded steel plate as one unit rather than splitting it to parts, because this saves more effort and reduces the risk of execution errors as in the case of multiple bonded parts. Both techniques have nearly the same effect upon the performance of strengthened slabs.

Development of Automatic Mark Welding Robot

  • Ryu, Sin-Wook;Kim, Ho-Gu;Lee, Jae-Chang;Kim, Se-Hwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.643-648
    • /
    • 2005
  • Generally, ships have marks of various shapes on outside of the hull. Among them, so called "Draft Mark" indicates the distance from the bottom of the keel to the waterline. Draft marks are used to determine the displacement and other properties of the ship for stability and control purposes. These marks are made up of welding bead or sticking the steel plate on outside of the hull. To improve the confidence level of the ship owner, quality and accuracy of the draft mark is very important. So the automatic mark welding robot is used to enable a high quality and accurate manufacturing line. To improve the system portability, the system is divided into two distinct parts, namely mechanical part and control part. Mechanical part is robust, a lightweight, and easy to dismantle. The control part consists of an in-house developed controller, which is based on embedded Linux. Also, the control part consists of power line communication module to ensure the applicability of the controller in manufacturing line. In this paper, the methodologies of control and configuration of the robot are discussed.

  • PDF

Load Frequency Control using Parameter Self-Tuning fuzzy Controller (파라미터 자기조정 퍼지제어기를 이용한 부하주파수제어)

  • 탁한호;추연규
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.2
    • /
    • pp.50-59
    • /
    • 1998
  • This paper presents stabilization and adaptive control of flexible single link robot manipulator system by self-recurrent neural networks that is one of the neural networks and is effective in nonlinear control. The architecture of neural networks is a modified model of self-recurrent structure which has a hidden layer. The self-recurrent neural networks can be used to approximate any continuous function to any desired degree of accuracy and the weights are updated by feedback-error learning algorithm. When a flexible manipulator is rotated by a motor through the fixed end, transverse vibration may occur. The motor toroque should be controlled in such a way that the motor rotates by a specified angle, while simultaneously stabilizing vibration of the flexible manipuators so that it is arresed as soon as possible at the end of rotation. Accurate vibration control of lightweight manipulator during the large changes in configuration common to robotic tasks requires dynamic models that describe both the rigid body motions, as well as the flexural vibrations. Therefore, a dynamic models for a flexible single link robot manipulator is derived, and then a comparative analysis was made with linear controller through an simulation and experiment. The results are proesented to illustrate thd advantages and imporved performance of the proposed adaptive control ove the conventional linear controller.

  • PDF

Ultra-Wideband Microstrip-to-Finite Ground Coplanar Waveguide Transition for Millimeter-Wave Systems (밀리미터파 시스템용 초광대역 마이크로스트립-FGCPW 전이구조 설계)

  • Kim, Young-Gon;Kim, Hong-Rak;Jung, Bae-Ho;Kim, Kang Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.8
    • /
    • pp.701-708
    • /
    • 2016
  • A new design for an ultra-wideband microstrip-to-FGCPW(Finite Ground Coplanar Waveguide) transition is presented. The proposed transition provides the electric field and impedance matching between adjacent transmission lines by ground shaping. The transition is designed on the analytical expressions of whole transitional structure. Conformal mapping is applied to obtain the characteristic impedance of FGCPW with bottom aperture within 3.3 % accuracy as compared with the EM-simulation results. As design example, the fabricated transition in back-to-back configuration provides insertion loss less than 1 dB per transition and return loss better than 10 dB for frequencies from 9 GHz to over 40 GHz.

Development of a 4-axis optical pickup actuator (4 축 광픽업 액추에이터의 개발)

  • Kim, Jae-Eun;Lee, Kyung-Taek;Hong, Sam-Nyol;Ko, Eui-Seok;Seo, Jeong-Kyo;Choi, In-Ho;Min, Byung-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.856-860
    • /
    • 2008
  • Wire-suspensions in the conventional actuators mechanically support the moving part and guarantee the accuracy of the actuator without tangential tilt actuation. However, such a suspension configuration has considerable stiffness in the tangential tilt direction with two additional wire beams for the tangential tilt. Thus, we performed a design sensitivity analysis for the wire-suspension stiffness of 4-axis actuator and controlled the main parameters such as distance among wire-suspensions and wire-suspension length to allow tangential tilt flexibility. The elasticity of frame PCB that supports the moving part by wire-suspensions was also exploited to improve the flexibility of wire-suspension in the tangential tilt direction. A novel suspension structure was devised by establishing eight wire-suspensions at both sides of the moving part for electrical connection to coils. The magnetic circuit according to the proposed 4-axis actuator using multi-polar magnet and coils was also suggested for the generation of electromagnetic forces in the focusing, tracking, radial and tangential tilt directions.

  • PDF

FE and ANN model of ECS to simulate the pipelines suffer from internal corrosion

  • Altabey, Wael A.
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.3
    • /
    • pp.297-314
    • /
    • 2016
  • As the study of internal corrosion of pipeline need a large number of experiments as well as long time, so there is a need for new computational technique to expand the spectrum of the results and to save time. The present work represents a new non-destructive evaluation (NDE) technique for detecting the internal corrosion inside pipeline by evaluating the dielectric properties of steel pipe at room temperature by using electrical capacitance sensor (ECS), then predict the effect of pipeline environment temperature (${\theta}$) on the corrosion rates by designing an efficient artificial neural network (ANN) architecture. ECS consists of number of electrodes mounted on the outer surface of pipeline, the sensor shape, electrode configuration, and the number of electrodes that comprise three key elements of two dimensional capacitance sensors are illustrated. The variation in the dielectric signatures was employed to design electrical capacitance sensor (ECS) with high sensitivity to detect such defects. The rules of 24-electrode sensor parameters such as capacitance, capacitance change, and change rate of capacitance are discussed by ANSYS and MATLAB, which are combined to simulate sensor characteristic. A feed-forward neural network (FFNN) structure are applied, trained and tested to predict the finite element (FE) results of corrosion rates under room temperature, and then used the trained FFNN to predict corrosion rates at different temperature using MATLAB neural network toolbox. The FE results are in excellent agreement with an FFNN results, thus validating the accuracy and reliability of the proposed technique and leads to better understanding of the corrosion mechanism under different pipeline environmental temperature.

Development of a STEP-compliant Web RPD Environment (STEP표준과 Web을 이용한 RPD환경 구축)

  • 강석호;김민수;김영호
    • Korean Journal of Computational Design and Engineering
    • /
    • v.5 no.1
    • /
    • pp.23-32
    • /
    • 2000
  • In this paper, we present a Web-enabled product data sharing system for the support of RPD (Rapid Product Development) process by incorporating STEP (STandard for the Exchange of Product model data) with Web technology such as VRML (Virtual Reality Markup Language), SGML (Structured Generalized Markup Language) and Java. Extreme competition makes product life cycle short by incessantly deprecating current products with a brand-new one, and thus urges enterprises to devise a new product faster than ever. In this environment, an RPD process with effective product data sharing system is essential to outstrip competitors by speeding up the development process. However, the diversity of product data schema and heterogeneous systems make it difficult to exchange the product data. We chose STEP as a neutral product data schema and Web as an independent exchange environment to overcome these problems. While implementing our system, we focused on the support of STEP AP 203 UoF (Units of Functionality) views to efficiently employ STEP data models that are maximally normalized, and therefore very cumbersome to handle. Our functionality-oriented UoF view approach can increase users'appreciation since it facilitates the modular usage of STEP data models. This can also enhance the accuracy of product data. We demonstrate that our view approach is applicable to the configuration control of mechanical assemblies.

  • PDF

Constitutive Modeling of Confined Concrete under Concentric Loading

  • Lee, Cha-Don;Park, Ki-Bong;Cha, Jun-Sil
    • KCI Concrete Journal
    • /
    • v.13 no.1
    • /
    • pp.69-78
    • /
    • 2001
  • The inelastic behavior of a reinforced concrete columns is influenced by a number of factors : 1) level of axial load, 2) tie spacing, 3) volumetric ratio of lateral steel, 4) concrete strength, 5) distribution of longitudinal steel, 6) strength of lateral steel, 7) cover thickness, 8) configuration of lateral steel, 9) strain gradient, 10) strain rate, 11) the effectively confined concrete core area, and 12) amount of longitudinal steel. A new constitutive model of a confined concrete is suggested in order to investigate the nonlinear behavior of the reinforced concrete columns under concentric loading. The developed constitutive model for the confined concrete takes into account the effects of effectively confined area as well as the horizontal and longitudinal distributions of the confining pressures. None of the existing models incorporated these two main effects at the same time. A total of different six constitutive models for the behavior of the confined concrete under concentric compression were compared with the sixty-one test results reported by different researchers. The superiority of the developed model in its accuracy is demonstrated by evaluating the error function, which compares the weighted averages for the sum of squared relative differences in peak compressive strength and corresponding strain, stress at strain equal to 0.015, and total area under stress-strain curve up to strain equal to 0.015.

  • PDF