• Title/Summary/Keyword: Cone metric spaces

Search Result 25, Processing Time 0.02 seconds

CONE ℭ-CLASS FUNCTIONS USING (CLRΓ𝔏)-PROPERTY ON CONE b-NORMED SPACES WITH APPLICATION

  • K. Maheshwaran;Arslan Hojat Ansari;Stojan N Radenovic;M.S. Khan;Yumnam Mahendra Singh
    • Korean Journal of Mathematics
    • /
    • v.32 no.3
    • /
    • pp.561-591
    • /
    • 2024
  • In this article, we demonstrate the conditions for the existence of common fixed points (CFP) theorems for four self-maps satisfying the common limit range (CLR)-property on cone b-normed spaces (CbNS) via ℭ-class functions. Furthermore, we have a unique common fixed point for two weakly compatible (WC) pairings. Towards the end, the existence and uniqueness of common solutions for systems of functional equations arising in dynamic programming are discussed as an application of our main result.

THE CHAIN RECURRENT SET ON COMPACT TVS-CONE METRIC SPACES

  • Lee, Kyung Bok
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.157-163
    • /
    • 2020
  • Conley introduced attracting sets and repelling sets for a flow on a topological space and showed that if f is a flow on a compact metric space, then 𝓡(f) = ⋂{AU ∪ A*U |U is a trapping region for f}. In this paper we introduce chain recurrent set, trapping region, attracting set and repelling set for a flow f on a TVS-cone metric space and prove that if f is a flow on a compact TVS-cone metric space, then 𝓡(f) = ⋂{AU ∪ A*U |U is a trapping region for f}.

GENERALIZED VECTOR MINTY'S LEMMA

  • Lee, Byung-Soo
    • The Pure and Applied Mathematics
    • /
    • v.19 no.3
    • /
    • pp.281-288
    • /
    • 2012
  • In this paper, the author defines a new generalized ${\eta}$, ${\delta}$, ${\alpha}$)-pseudomonotone mapping and considers the equivalence of Stampacchia-type vector variational-like inequality problems and Minty-type vector variational-like inequality problems for generalized (${\eta}$, ${\delta}$, ${\alpha}$)-pseudomonotone mappings in Banach spaces, called the generalized vector Minty's lemma.

DEFORMATION SPACES OF CONVEX REAL-PROJECTIVE STRUCTURES AND HYPERBOLIC AFFINE STRUCTURES

  • Darvishzadeh, Mehdi-Reza;William M.Goldman
    • Journal of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.625-639
    • /
    • 1996
  • A convex $RP^n$-structure on a smooth anifold M is a representation of M as a quotient of a convex domain $\Omega \subset RP^n$ by a discrete group $\Gamma$ of collineations of $RP^n$ acting properly on $\Omega$. When M is a closed surface of genus g > 1, then the equivalence classes of such structures form a moduli space $B(M)$ homeomorphic to an open cell of dimension 16(g-1) (Goldman [2]). This cell contains the Teichmuller space $T(M)$ of M and it is of interest to know what of the rich geometric structure extends to $B(M)$. In [3], a symplectic structure on $B(M)$ is defined, which extends the symplectic structure on $T(M)$ defined by the Weil-Petersson Kahler form.

  • PDF