• Title/Summary/Keyword: Conductive material

Search Result 755, Processing Time 0.026 seconds

Influence of Flash-over Voltage on Conductive Particle-Initiated and Solid Dielectric Barrier (고체유전체의 장벽과 도전성 파티클이 섬락전압에 미치는 영향)

  • 이용길;김동의;이세헌;김재호;김정달
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.8 no.3
    • /
    • pp.54-63
    • /
    • 1994
  • In this paper, we fixed to the needle electrode on the plate spacer fabricated the plate electrode of the gap interval 40[mm]and divided into the interval lO[mm]in the gap. When set up the particle and barrier on the material as well as spacer in the each intervaL We investigated that FOV and discharge path to AC, OC positive polarity. The results are as follow. 1) When the barrier is settled on the high potential side and the particle is hidden on the back of barrier, FaV has been increased. 2) When the particle is located on the tip of needle electrode, FaV has been decreased considembly. 3) When the particle is between electrodes. FaV has been decreased because discharge path through the particle.

  • PDF

Effect of Conductive Additives on $FeS_2$ Cathode ($FeS_2$ 양극에 미치는 전도성 첨가제의 영향)

  • Choi, Yu-Song;Cheong, Hae-Won;Kim, Ki-Youl;Cho, Sung-Baek
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.224-230
    • /
    • 2012
  • Thermal batteries have excellent mechanical robustness, reliability, and long shelf life. Due to these characteristics as well as their unique activation mechanism, thermal batteries are widely adopted as military power sources. Li(Si)/$FeS_2$ thermal batteries, which are used mostly in these days, use LiCl-KCl and LiBr-LiCl-LiF as molten salt electrolyte. However, it is known that Li(Si)/$FeS_2$ thermal batteries have high internal resistance. Especially, $FeS_2$ cathode accounts for the greater part of internal resistance in unit cell. Many efforts have been put into to decrease the internal resistance of thermal batteries, which result in the development of new electrode material and new electrode manufacturing processes. But the applications of these new materials and processes are in some cases very expensive and need complicated additional processes. In this study, internal resistance study was conducted by adding carbon black and carbon nano-tube, which has high electron conductivity, into the $FeS_2$ cathode. As a results, it was found that the decrease of internal resistance of $FeS_2$ cathode by the addition of carbon black and carbon nano-tube.

A Study on the Dielectric Properties of EVA/Carbon Black Composites (EVA/카본블랙 복합체의 유전특성에 관한 연구)

  • Lee, K.Y.;Yang, J.S.;Lee, K.W.;Choi, Y.S.;Park, D.H.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.1893-1895
    • /
    • 2005
  • To measure electrical properties of semiconducting materials in power cable, we have investigated dielectric properties of EVA showed by changing the content of carbon black. The specimen was primarily kneaded in material samples of pellet form for 5 minutes on rollers ringing between $70[^{\circ}C]$ and $100[^{\circ}C]$. Then that was produced as sheets after pressing for 20 minutes at $180[^{\circ}C]$ with a pressure of 200[kg/cm]. The contents of conductive carbon black were 20, 30 and 40(wt%), respectively The dielectric properties of specimens were measured by dielectric thermal analyzer (CONCEPT 40, NOVOCONTROL). Measuring frequencies were 10, 60, 100, 1000, 10000, 100000, 1000000(Hz) and measuring temperatures were -40, -20, 20, $90[^{\circ}C]$. From above experimental result, permittivity was increased, while $tan{\delta}$ was decreased according to an increment of the content of carbon black.

  • PDF

A Study of Consideration of Children's Furniture Design Elements (아동용 가구디자인 요소의 고려 사항 연구)

  • Lee, Sang Ill;Kim, Chung Ho
    • Journal of the Korea Furniture Society
    • /
    • v.28 no.3
    • /
    • pp.185-197
    • /
    • 2017
  • With the advent of industrial society, the phenomenon of nuclear families has brought many changes in the family environment. Of changes, a decrease in the number of new-born babies led to one-child families, which then led to an increase in interest in children. Interest in children gave birth to a consumptive trend called "kids marketing," and phenomena of generous investment and consumption for children appear to continue to the future. In reality, too, the consumer market of children's apparel and learning materials for children has sharply increased over the past few years, and products related to children have become the center of family consumptions. Therefore, at this point when children are the center of consumptive life in the family and the relationship between products and users is becoming an increasingly more important variable, the conductive research focusing on children is necessary. These important factors embraced wide areas of activities in research on children, from children's physical changes, children's preference, such as color and material, to children's consumptive environment, as they can provide a foundation for furniture design suitable for children.

Electromagnetic Shielding Effectiveness of Melt-blown Nonwoven Fabric with Width and Interval of Thin Copper Film (구리박막의 넓이와 간격에 따른 melt-blown 부직포의 전자파 차폐 효과)

  • Shin Hyun Sae;Son Jun Sik;Kim Young Sang;Jeong Jin Soo
    • Textile Coloration and Finishing
    • /
    • v.16 no.5
    • /
    • pp.42-47
    • /
    • 2004
  • The main objective of this work is to develop melt-blown nonwoven fabric composite materials have electromagnetic shielding characteristics using thin copper film. Melt-blown nonwoven fabric is the matrix phase and thin copper films are the reinforcement of the composite materials. Thin copper films are incorporated as conductive fillers to provide the electromagnetic shielding property of the melt-blown nonwoven fabric. The width and interval of thin copper films in the nonwoven fabric are varied by changing 1, 3, 5 mm for thin copper film's width and 1, 3, 5 mm for thin copper film's interval. The shielding effectiveness(SE) of various melt-blown nonwoven fabrics is measured in the frequency range of 50 MHz to 1.8 GHz. The variations of SE of melt-blown nonwoven fabric with width and interval of thin copper films are described. Suitability of melt-blown nonwoven fabric for electromagnetic shielding applications is discussed. The results indicate that the melt-blown nonwoven fabric composite material using thin copper film can be used for the purpose of electromagnetic shielding.

Fabrication of Conductive Polymer Resistors Using Ink-jet Printing Technology (잉크젯 프린팅 기술을 이용한 전도성 폴리머 저항의 제작)

  • Lee, Sang-Ho;Kim, Myong-Ki;Shin, Kwon-Yong;Kang, Kyung-Tae;Park, Moon-Soo;Hwang, Jun-Young;Kang, Heui-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2007.11a
    • /
    • pp.98-99
    • /
    • 2007
  • This study has successfully demonstrated the direct fabrication of polymer resistors using ink-jet printing technology as an alternative patterning to traditional photolithography. The polymer resistors were fabricated just by two layer processes using a ink-jet printer (DMP-2800, Fujifilm Dimatix). First, resistive materials was patterned by a ink-jet printing with the desired width and length. Next, resistor fabrication was completed by printing metal contact pads on the both sides of the polymer resistor. We used poly (3,4-ethylene dioxythiophene) poly(styrenesulfonate)(PEDOT:PSS) for the resistor material and a nano-sized silver colloid for the metal contact pads. We characterized the electrical properties of PEDOT:PSS by measuring sheet resistance and specific resistance on a glass substrate. From analysis of the measured resistances, the electrical resistances of the polymer resistors linearly increased as a function of printed width and length of resistors. The accuracy of the fabricated polymer resistor showed about $0.6{\sim}2.5%$ error for the same dimensions.

  • PDF

Study of New Light Source with Nano Carbon Material (나노카본을 이용한 조명용 신광원에 관한 연구)

  • Kim, Kwang-Bok;Kim, Yong-Won;Jung, Han-Gi;Song, Yoon-Ho
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.31-34
    • /
    • 2006
  • The characteristic of carbon nano fiber (CNF) as electron emitters was described. Carbon nano fiber (CNF) of herringbone was prepared by thermal chemical vapor deposition(CVD), mixed with binders and conductive materials, and then were formed by screen-printing process. In order to increase effectively field emissions, the surface treatment of rubbing & peel-off was applied to the printed CNF emitters on cathode electrode. The measurements of field emission properties were carried out by using a diode structure inline vacuum chamber. CNF of herringbone type showed good emission properties that a turn on field was as low as $2.5V/{\mu}m$ and current density was as large as $0.15mA/cm^2$ of $4.5V/{\mu}m$ with electric field. After the vacuum packaged panel of 5-inch in diagonal, the measured white brightness was as high as $7000cd/m^2$ at 1900V of anode and 700V of gate voltage.

  • PDF

Influence of Electron Beam Irradiation on the Structural, Optical, and Electrical Properties of ZTO/Ag/ZTO Trilayer Films

  • Eom, Tae-Young;Song, Young-Hwan;Gong, Tae-Kyung;Kim, Daeil;Cheon, Joo-Yong;Cha, Byung-Chul
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.4
    • /
    • pp.217-220
    • /
    • 2017
  • We deposited transparent conductive ZTO/Ag/ZTO trilayer thin films on glass substrates through magnetron sputtering, and then conducted intense electron beam irradiation on their surfaces to investigate the effects of electron irradiation on the structural, optical, and electrical properties of these films. After deposition, we electron irradiated the ZTO/Ag/ZTO films for 10 min at electron energies of 300, 500, and 700 eV. The films that were electron irradiated at 700 eV showed a higher optical transmittance (84.2%) in the visible wavelength region and a lower resistivity ($7.2{\times}10^{-5}{\Omega}cm$) compared with the other films. The figure of merit revealed that the ZTO/Ag/ZTO films that were electron irradiated at 700 eV had a higher optical and electrical performance than the other films prepared in this study.

Synthesis and Characterization of Al-Doped Zinc Oxide Films by an Radio Frequency Magnetron Sputtering Method for Transparent Electrode Applications

  • Seo, Jae-Keun;Ko, Ki-Han;Cho, Hyung-Jun;Choi, Won-Seok;Park, Mun-Gi;Seo, Kyung-Han;Park, Young;Lim, Dong-Gun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.1
    • /
    • pp.29-32
    • /
    • 2010
  • In this study, transparent and conductive Al-doped zinc oxide (AZO) films were prepared on a glass substrate by an radio frequency (RF) magnetron sputtering method using a 150-nm-thick AZO target (Al: 2 wt.%) at room temperature. We investigated the effects of RF power between 100-350 W (in steps of 50 W) on the structural, electrical, and optical properties of the AZO films. The thickness and cross-sectional images of the films were observed by field emission scanning electron microscopy. The thicknesses of all films were kept constant at 150 nm and grown on a glass substrate. The grain sizes of the AZO films were determined with the X-ray diffraction by using the Scherrer' equation, and their electrical properties were investigated using a Hall effect electronic transport measurement system. The transmittance of the AZO films was also measured by an ultraviolet-visible spectrometer.

Study on IPT Characteristics of LSR / Nano Silica Composites for HVDC (HVDC용 LSR/Nano Silica Composites의 IPT특성 연구)

  • Park, Jae-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.1
    • /
    • pp.61-68
    • /
    • 2019
  • Only the power is converted from AC to DC, in accordance with IEC 60587 based test method, in order to develop the LSR(Liquid Silicone Rubber) insulator material for HVDC, the experiment of Inclined Plate Tracking and Erosion Resistance was conducted. A contaminant (2.5 mS/cm: ammonium chloride) was applied at a rate of 0.3 ml/min and a voltage of ${\pm}3.5kV$, and was evaluated on the basis of 60 mA/2s. The samples were prepared by dispersing LSR/Nano silica_25wt% Composites in LSR. The erosion phenomena of surface discharge and tracking due to DC polarity and negative polarity were measured by image, leakage current maximum and thermal camera. The thermal imaging camera measured the surface temperature generated by the joule heat of the leakage current due to the drying discharge and the conductive current. After the measurement, the tracking and erosion mechanisms were evaluated for erosion weight, erosion depth and erosion length. Positive and negative polarity of LSR/Nano Silica_25wt% composite Tracking and erosion results show that positive polarity is more severe than negative polarity.