• Title/Summary/Keyword: Conductive Wall

Search Result 67, Processing Time 0.024 seconds

Preparation and Characterization of Conducting Composites Impregnated with Thick Polyheterocyclic Polymers (전도성 복합소재의 합성과 특성연구)

  • Park, Jun-Seo
    • Applied Chemistry for Engineering
    • /
    • v.9 no.3
    • /
    • pp.342-347
    • /
    • 1998
  • Light-weight conductive polymer composites were prepared by incorporating polyheterocycles such as polypyrrole and polythiophene into pores of a highly porous cross-linked polystyrene, host polymer, to form a conductive network. The highly hydrophobic and porous host polymer was synthesized by concentrated emulsion polymerization method. Polypyrrole-based composites, prepared by employing ferric chloride-methanol system, showed a conductivity as high as 0.82 S/cm. Conductivity of polythiophene-based composites, prepared from ferric chloride-acetonitrile system, was 6.05 S/cm. Conductivity of compositivity was influenced by the initial molar ratio of oxidant to monomer as well. SEM micrographs of the composites showed that conducting polymer coated uniformly the inside wall of the porous host polymer. Shielding effectiveness of the polypyrrole-based composites and of the polythiophene-based composites were 15.2 dB and 22.5 dB at 2.0 GHz, respectively. In the temperature range from 20 to 300K, a polypyrrole impregnated composite exhibited seimiconducting behavior and followed the variable range hopping(VRH) model for charge transport.

  • PDF

Design of Paper-Based Reconfigurable Frequency Selective Surface for Spectrum Control of Indoor Environments (실내 공간 스펙트럼 제어를 위한 종이기반 재구성 주파수 선택구조 설계)

  • Cho, Sung-Sil;Hong, Ic-Pyo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.7
    • /
    • pp.775-782
    • /
    • 2016
  • In this paper, we presented the paper-based reconfigurable frequency selective surface(FSS) for transmitting or blocking the wireless LAN signal in indoor environments. The proposed reconfigurable FSS are designed on coated paper using a printing of conductive ink and conductive adhesive for PIN diode, which provides ON/OFF of the reconfigurable FSS for passing or blocking the 5GHz signal. The reconfigurable FSS attached on the wall can pass or block the incident wireless signal as the received signal strength in indoor. To provide the validity of the proposed FSS, we fabricated the reconfigurable FSS on the paper and confirmed the very similar results between simulations and measurements. From the measured results of the proposed spectrum control system, we know that the proposed reconfigurable FSS can block about 20dB at 5.745GHz~5.805GHz.

Electrical Properties of PVdF/PVP Composite Filled with Carbon Nanotubes Prepared by Floating Catalyst Method

  • Kim, Woon-Soo;Song, Hee-Suk;Lee, Bang-One;Kwon, Kyung-Hee;Lim, Yun-Soo;Kim, Myung-Soo
    • Macromolecular Research
    • /
    • v.10 no.5
    • /
    • pp.253-258
    • /
    • 2002
  • The multi-wall carbon nanotubes (MWNTs) with graphite crystal structure were synthesized by the catalytic decomposition of a ferrocene-xylene mixture in a quartz tube reactor to use as the conductive filler in the binary polymer matrix composed of poly(vinylidene fluoride) (PVdF) and poly(vinyl pyrrolidone) (PVP) for the EMI (electromagnetic interference) shielding applications. The yield of MWNTS was significantly dependent on the reaction temperature and the mole ratio of ferrocene to xylene, approaching to the maximum at 800 $^{\circ}C$ and 0.065 mole ratio. The electrical conductivity of the MWNTs-filled PVdF/PVP composite proportionally depended on the mass ratio of MWNTs to the binary polymer matrix, enhancing significantly from 0.56 to 26.7 S/cm with the raise of the mass ratio of MWNTs from 0.1 to 0.4. Based on the higher electrical conductivity and better EMI shielding effectiveness than the carbon nanofibers (CNFs)-filled coating materials, the MWNTs-filled binary polymer matrix showed a prospective possibility to apply to the EMI shielding materials. Moreover, the good adhesive strength confirmed that the binary polymer matrix could be used for improving the plastic properties of the EMI shielding materials.

A Study on Carbon Nano Materials as Conductive Oilers for Microwave Absorbers (전자파 흡수체를 위한 전도성 소재로서의 탄소나노소재의 특성에 대한 연구)

  • Lee, Sang-Kwan;Kim, Chun-Gon;Kim, Jin-Bong
    • Composites Research
    • /
    • v.19 no.5
    • /
    • pp.28-33
    • /
    • 2006
  • In this paper, we have studied the complex permittivities and their influence on the design of microwave absorbers of E-glass fabric/epoxy composite laminates containing three different types of carbon-based nano conductive fillers such as carbon black (CB), carbon nano fiber (CNF) and multi-wall nano tube (MWNT). The measurements were performed fur permittivities at the frequency band of 0.5 GHz$\sim$18.0 GHz using a vector network analyzer with a 7 mm coaxial air line. The experimental results show that the complex permittivities of the composites depend strongly on the natures and concentrations of the conductive fillers. The real and imaginary parts of the complex permittivities of the composites were proportional to the filler concentrations. But, depending on the types of fillers and frequency band, the increasing rates of the real and imaginary parts with respect to the filler concentrations were all different. These different rates can have an effect on the thickness in designing the single layer microwave absorbers. The effect of the different rates at 10 GHz was examined by using Cole-Cole plot; the plot is composed of a single layer absorber solution line and measured permittivities from these three types of composites. Single layer absorbers of 3 different thicknesses using carbon nano materials were fabricated and the -10 dB band of absorbing performances were all about 3 GHz.

Effect of Multi-wall Carbon Nanotube Surface Treatment on the Interface and Thermal Conductivity of Carbon Nanotube-based Composites (다중벽탄소나노튜브 복합재료의 계면 및 열전도도에 표면처리 방법이 미치는 영향)

  • Yoo, Gi-Moon;Lee, Sung-Goo;Kim, Sung-Ryong
    • Journal of Adhesion and Interface
    • /
    • v.11 no.4
    • /
    • pp.174-180
    • /
    • 2010
  • The effect of carbon nanotube surface treatment on the interface and thermal conductivity of carbon nanotube-based poly(methylmethacrylate) (PMMA) composites was investigated. Coagulation and atomic-transfer radical polymerization (ATRP) was applied to modify the surface of multi-wall carbon nano-tube. The composite of ATRP method used carbon nanotube showed the higher transparency and thermal conductivities than that of the coagulation method used. In comparison to the thermal conductivity of pure PMMA, 0.21 W/mK, the ATRP carbon nanotube used PMMA/MWNT composite showed a thermal conductivity of 0.38 W/mK. The interface between carbon nanotube and PMMA was observed by scanning electron microscope and uniform dispersion of carbon nanotube was observed without any void in the PMMA matrix. It may be beneficial to transport the phonon without any scattering and it may result in a higher thermal conductivity.

Magnetic Resonant Wireless Power Transfer with L-Shape Arranged Resonators for Laptop Computer

  • Choi, Jung Han;Kang, Seok Hyon;Jung, Chang Won
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.3
    • /
    • pp.126-132
    • /
    • 2017
  • In this study, we designed, measured, and analyzed a rearranged L-shape magnetic resonance coupling wireless power transfer (MR-WPT) system for practical applications with laptops. The typical four resonator MR-WPT (Tx part: source loop and Tx coil; Rx part: Rx coil and load loop) is difficult to apply to small-sized stationary and mobile applications, such as laptop computers, tablet-PCs, and smartphones, owing to the large volume of the Rx part and the spatial restrictions of the Tx and Rx coils. Therefore, an L-shape structure, which is the orthogonal arrangement of the Tx and Rx parts, is proposed for indoor environment applications, such as at an L-shaped wall or desk. The relatively large Tx part and Rx coil can be installed in the wall and the desk, respectively, while the load loop is embedded in the small stationary or mobile devices. The transfer efficiency (TE) of the proposed system was measured according to the transfer distance (TD) and the misaligned locations of the load loop. In addition, we measured the TE in the active/non-active state and monitor-open/closed state of the laptop computer. The overall highest TE of the L-shape MR-WPT was 61.43% at 45 cm TD, and the TE decreased to 27.9% in the active and monitor-open state of the laptop computer. The conductive ground plane has a much higher impact on the performance when compared to the impact of the active/non-active states. We verified the characteristics and practical benefits of the proposed L-shape MR-WPT compared to the typical MR-WPT for applications to L-shaped corners.

Application of Miniature Heat Pipe for Notebook PC Cooling (노트북 PC CPU 냉각용 소형 히트파이프 Packaging 연구)

  • Moon, Seok-Hwan;Hwang, Gunn;Choy, Tae-Goo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.6
    • /
    • pp.799-803
    • /
    • 2001
  • Miniature heat pipe(MHP) with woven-wired wick was used to cool the CPU of a notebook PC. The pipe with circular cross-section was pressed and bent for packaging the MHP into a notebook PC with very limited compact packaging space. A cross-sectional area of the pipe is reduced about 30% as the MHP with 4mm diameter is pressed to 2mm thickness. In the present study a performance test has been performed in order to review varying of operating performance according to pressed thickness variation and heat dissipation capacity of MHP cooling module that is packaged on a notebook PC. New wick type was considered for overcoming low heat transfer limit when MHP is pressed to thin-plate. The limiting thickness or pressing is shown to be within the range of 2mm∼2.5mm through the performance test with varying the pressing thickness. When the wall thickness of 0.4mm is reduced to 0.25mm for minimizing conductive thermal resistance through the wall of heat pipe, heat transfer limit and thermal resistance of MHP were improved about 10%. In the meantime, it is shown that the thermal resistance and heat transfer limit for the MHP with central wick type are higher than those of MHP with existing wick types. The results of performance test for MHP cooling modules with woven-wired wick to cool a notebook PC shows the stability as cooling system since T(sub)j(Temperature of Processor Junction) satisfy a demand condition of 0∼100$\^{C}$ under 11.5W of CPU heat.

Three-Dimensional Natural Convection from a Single Module on the Wall of a Vertical Parallel-Plate Channel (수직평행채널의 벽면에 부착된 단일모듈로부터의 3차원 자연대류 열전달)

  • Riu, K.J.;Lee, J.H.;Kim, H.W.
    • Solar Energy
    • /
    • v.19 no.3
    • /
    • pp.29-41
    • /
    • 1999
  • Three-dimensional natural convective heat transfer in a vertical channel with a protruding single module was investigated experimentally. The particular interest was in the removal of thermal energy from the module by convective heat transfer. Hence radiative and conductive heat losses were estimated by using thermocouples and heat flux sensor respectively. The flow fields in the channel were visualized by means of a smoke-method. Also, local temperatures were measured by thermocouples inside the channel, along the vertical wall and module surface. It is found that convective heat transfer was promoted at the lower comer of the module and was decreased at the upper comer due to a recirculation zone. A general correlation of the critical channel ratios was found as a function of Rayleigh number. For the range of $8.28{\times}10^3<Ra^*_c<3.48{\times}10^6$, a useful correlation for the mean Nusselt number was proposed as a function of modified channel Rayleigh number.

  • PDF

An Experimental Study on the Evaluation of EMP Shielding Performance of Concrete Applied with ATMSM Using Zn-Al Alloy Wire (Zn-Al 합금 선재를 이용한 금속용사 공법 적용 콘크리트의 전자파 차폐 성능 평가에 관한 실험적 연구)

  • Choi, Hyun-Jun;Park, Jin-Ho;Min, Tae-Beom;Jang, Hyun-O;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.3
    • /
    • pp.209-217
    • /
    • 2019
  • EMP (Electromagnetic Pulse) usually means High Power Electromagnetic Wave (HPEM). In the case of the shielding plate against the EMP, there is a possibility of deterioration of the electromagnetic wave shielding performance due to the skill of the constructor, bad construction, deformation of the shielding plate at the connection portion (joint portion). The inefficient use of space due to the separation distance is also pointed out as a problem. Therefore, this study aims to derive the optimum electromagnetic shielding condition by applying ATMSM to concrete as a part of securing electromagnetic wave shielding performance with reflection loss against concrete wall. Experimental parameters included concrete wall thickness and application of Zn-Al ATMSM. For the concrete wall, the wall thickness was 100 to 300mm, which is generally applied, and experimental parameters were set for the application of Zn-Al metal spraying method to evaluate electromagnetic shielding performance. Experimental results showed that as the thickness increases, the electromagnetic shielding performance increases due to the increase of absorption loss. In addition, after the application of Zn-Al ATMSM, the average shielding performance increased by 56.68 dB on average, which is considered to be increased by the reflection loss of the ATMSM. In addition, it is considered that the shielding performance will be better than that when the conductive mixed material and the ATMSM are simultaneously applied.

Comparison of Catalytic Activity for Methanol Electrooxidation Between Pt/PPy/CNT and Pt/C

  • Lee, C.G.;Baek, J.S.;Seo, D.J.;Park, J.H.;Chun, K.Y.
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.4
    • /
    • pp.240-245
    • /
    • 2010
  • This work explored the catalytic effect of Pt in multi-wall carbon nanotube and poly-pyrrole conductive polymer electrocatalysts (Pt/PPy/MWCNT). A home-made Pt/PPy/MWCNT catalyst was first evaluated by comparing its electrochemical active surface area (ESA) with E-Tek commercial catalysts by cyclic voltammetry in $H_2SO_4$ solution. Then, the methanol oxidation currents of Pt/PPy/MWCNT and the hydrogen peaks in $H_2SO_4$ solution were serially measured with microporous electrode. This provided the current density of methanol oxidation based on the ESA, allowing a quantitative comparison of catalytic activity. The current densities were also measured for Pt/C catalysts of E-Tek and Tanaka Precious Metal Co. The current densities for the different catalysts were similar, implying that catalytic activity depended directly on the ESA rather than charge transfer or electronic conductivity.