Effect of Multi-wall Carbon Nanotube Surface Treatment on the Interface and Thermal Conductivity of Carbon Nanotube-based Composites

다중벽탄소나노튜브 복합재료의 계면 및 열전도도에 표면처리 방법이 미치는 영향

  • Yoo, Gi-Moon (Department of Polymer Science and Engineering, Chungju National University) ;
  • Lee, Sung-Goo (Information & Electronics Polymer Research Center, Korea Research Institute of Chemical Technology) ;
  • Kim, Sung-Ryong (Department of Polymer Science and Engineering, Chungju National University)
  • 유기문 (충주대학교 공과대학 나노고분자공학과) ;
  • 이성구 (한국화학연구원 정보전자폴리머 연구센터) ;
  • 김성룡 (충주대학교 공과대학 나노고분자공학과)
  • Received : 2010.12.13
  • Accepted : 2010.12.22
  • Published : 2010.12.30

Abstract

The effect of carbon nanotube surface treatment on the interface and thermal conductivity of carbon nanotube-based poly(methylmethacrylate) (PMMA) composites was investigated. Coagulation and atomic-transfer radical polymerization (ATRP) was applied to modify the surface of multi-wall carbon nano-tube. The composite of ATRP method used carbon nanotube showed the higher transparency and thermal conductivities than that of the coagulation method used. In comparison to the thermal conductivity of pure PMMA, 0.21 W/mK, the ATRP carbon nanotube used PMMA/MWNT composite showed a thermal conductivity of 0.38 W/mK. The interface between carbon nanotube and PMMA was observed by scanning electron microscope and uniform dispersion of carbon nanotube was observed without any void in the PMMA matrix. It may be beneficial to transport the phonon without any scattering and it may result in a higher thermal conductivity.

다중벽탄소나노튜브를 표면처리하여 polymethylmethacrylate (PMMA) 기재에 첨가하여 제조한 고분자 복합재료에서 탄소나노튜브의 표면처리가 계면 및 열전도도에 미치는 효과를 고찰하였다. Coagulation 방법과 atomic transfer radical polymerization (ATRP) 방법을 사용하여 탄소나노튜브를 표면 처리 하여 사용하였으며, ATRP 방법을 적용하여 제조한 복합재료는 coagulation 방법을 사용하여 제조한 복합재료보다 높은 열전도도와 투과도를 가졌다. 순수 PMMA의 열전도도가 0.21 W/mK인데 비하여 ATRP 방법으로 처리한 1 wt%의 탄소나노튜브를 첨가하였을 경우 0.38 W/mK로 열전도도가 향상되었다. 탄소나노튜브와 PMMA기재의 계면을 주사전자현미경을 이용하여 관찰한 결과 탄소나노튜브의 표면처리에 의해 기재 내에 분산이 향상되고 고분자기재-탄소나노튜브 계면에서의 접촉이 용이해져 포논산란이 감소되어 광 투과성을 가지면서 열전도도가 향상된 것으로 보인다.

Keywords

References

  1. A. S. Luyt, J. A. Molefi, and H. Krump, Polym. Degrad. Stab., 91, 1629 (2006). https://doi.org/10.1016/j.polymdegradstab.2005.09.014
  2. I. Krupta, I. Novak, and I. Chodak, Synthe. Met., 145, 245 (2004). https://doi.org/10.1016/j.synthmet.2004.05.007
  3. L. C. Sim, S. L. Ramanan, and H. Ismail, Thermochim. Acta, 430, 155 (2005). https://doi.org/10.1016/j.tca.2004.12.024
  4. W. Zhou, S. Qi, Q. An, H Zhao, and N. Liu, Materials Research Bulletin, 14, 1863 (2007).
  5. Y. Xu, D. D. L. Chung, and C. Mroz, Composites. Part A, 32, 1749 (2001). https://doi.org/10.1016/S1359-835X(01)00023-9
  6. D. H. Kim, M. H. Kim, J. H. Lee, J. H. Lim, B. C. Lee, K. M. Kim, J. M. Park, and S. R. Kim, Materials Science Forum, 544, 483 (2007).
  7. W. Zhou, S. Qi, H. Li, and S. Shao, Thermochimica. Acta, 452, 36 (2007). https://doi.org/10.1016/j.tca.2006.10.018
  8. P. Dashora and G. Gupta, Polymer, 37, 231 (1996). https://doi.org/10.1016/0032-3861(96)81092-5
  9. D. M. Bigg, Metal-filled polymers, Marcel Dekker, New York, USA (1986.)
  10. G. W. Lee, M. Park, J. K. Kim, J. J. I. Lee, and J. H. G. Yoon, Composites : Part A, 37, 727 (2005).
  11. F. Du, J. E. Fischer, and K. I. Winey, J. Polym. Sci. B, Polym. Phys., 41, 3333 (2003). https://doi.org/10.1002/polb.10701
  12. S. Berber, Y. K. Kwon, and D. Tomanek, Phys. Rev. Lett., 84, 4613 (2000). https://doi.org/10.1103/PhysRevLett.84.4613
  13. M. J. Biercuk, M. C. Liaguno, M. Radosavljevic, J. K. Hun, A. T. Johnson, and J. E. Fischer, Appl. Phys. Lett, 80, 2767 (2002). https://doi.org/10.1063/1.1469696
  14. S. L. Shinde and J. S. Goela, High Thermal Conductivity Materials, Springer Science+Business Media, Inc., New York (2006).
  15. E. T. Thostenson and T. W. Chou, J. Phys. D. Appl. Phys, 35, 77 (2002).
  16. H. Kong, C. Gao, and D. Yan, J. Amer. Chem. Soc., 126, 413 (2004)
  17. C. H. Lim and S. S. Fan, Appl. Phys. Lett., 86, 123106 (2005). https://doi.org/10.1063/1.1887839
  18. A. Yu, M. E. Itkis, E. Bekyarova, and R. C. Haddon, Applied Physics Letters, 89, 133102 (2006). https://doi.org/10.1063/1.2357580
  19. E. S. Choi, J. S. Brook, D. L. Eaton, M. S. Haik, and K. Dahmen, J. Appl. Phys, 94, 6034 (2003). https://doi.org/10.1063/1.1616638
  20. 김성룡, 임승원, 김대훈, 이상협, 박종만, 접착 및 계면, 9, 7 (2008).
  21. W. Zhou, D. Yu, C. Min, Y. Fu, and Z. Guo, J. Applied Polymer Sci., 112, 1695 (2009). https://doi.org/10.1002/app.29602
  22. S. Shenogrin, A. Bodapati, L. Xue, R. Ozisik, and P. Keblinski, Appl. Phys. Lett, 85, 2229 (2004). https://doi.org/10.1063/1.1794370
  23. R. Strumpler and J. Glaz-Reichenbach, J. Electroceramics, 3, 329 (1999). https://doi.org/10.1023/A:1009909812823