DOI QR코드

DOI QR Code

Comparison of Catalytic Activity for Methanol Electrooxidation Between Pt/PPy/CNT and Pt/C

  • Lee, C.G. (Dept. of Chemical Engineering, Hanbat National University) ;
  • Baek, J.S. (Dept. of Chemical Engineering, Hanbat National University) ;
  • Seo, D.J. (R&D Center, LS Cable) ;
  • Park, J.H. (Advanced Technology R&D Center) ;
  • Chun, K.Y. (School of Mechanical Engineering, Sungkyunkwan University)
  • Received : 2010.06.24
  • Accepted : 2010.07.17
  • Published : 2010.11.30

Abstract

This work explored the catalytic effect of Pt in multi-wall carbon nanotube and poly-pyrrole conductive polymer electrocatalysts (Pt/PPy/MWCNT). A home-made Pt/PPy/MWCNT catalyst was first evaluated by comparing its electrochemical active surface area (ESA) with E-Tek commercial catalysts by cyclic voltammetry in $H_2SO_4$ solution. Then, the methanol oxidation currents of Pt/PPy/MWCNT and the hydrogen peaks in $H_2SO_4$ solution were serially measured with microporous electrode. This provided the current density of methanol oxidation based on the ESA, allowing a quantitative comparison of catalytic activity. The current densities were also measured for Pt/C catalysts of E-Tek and Tanaka Precious Metal Co. The current densities for the different catalysts were similar, implying that catalytic activity depended directly on the ESA rather than charge transfer or electronic conductivity.

Keywords

References

  1. J.-M. Leger, 'Mechanistic aspects of methanol oxidation on platinum-based electrocatalysts', J. Appl. Electrochem., 31, 767 (2001). https://doi.org/10.1023/A:1017531225171
  2. C. Lamy, S. Rousseau, E. M. Belgsir, D. Coutanceau, and J.-M. Leger, 'Recent progress in the direct ethanol fuel cell: development of new platinum-tin electrocatalysts', Electrochimica Acta, 49, 3901 (2004). https://doi.org/10.1016/j.electacta.2004.01.078
  3. M. Watanabe, S. Motoo, 'Electrocatalysis by ad-atoms: Enhancement of the oxidation of methanol on platinum by ruthenium ad-atoms', J. Electroanal. Chem., 60, 267 (1975). https://doi.org/10.1016/S0022-0728(75)80261-0
  4. A. L. Ocampo, M. Miranda-Hernandez, J. Morgado, J. A. Montoya, and P. J. Sebastian, 'Characterization and evaluation of Pt-Ru catalyst supported on multi-walled carbon nanotubes by electrochemical impedance', J. Power Sources, 160, 915 (2006). https://doi.org/10.1016/j.jpowsour.2006.02.056
  5. H. Tang, J. Chen, S. Yao, L. Nie, Y. Kuang, Z. Huang, D. Wang, and Z. Ren, 'Deposition and electrocatalytic properties of platinum on well-aligned carbon nanotubes (CNT) arrays for methanol oxidation' Materials Chemistry and Physics, 92, 548 (2005). https://doi.org/10.1016/j.matchemphys.2005.02.009
  6. M. Carmo, V. A. Paganini, J. M. Rosolen, and E. R. Gonzalez, 'Alternative supports for the preparation of catalysts for low-temperature fuel cells: the use of carbon nanotubes' J. Power Sources, 142, 169 (2005). https://doi.org/10.1016/j.jpowsour.2004.10.023
  7. C.-C. Chien and K.-T. Jeng, 'Effective preparation of carbon nanotubes-supported Pt-Ru electrocatalysts', Materials Chemistry and Physics, 99, 80 (2006). https://doi.org/10.1016/j.matchemphys.2005.09.080
  8. E. Yoo, T. Okada, T. Kizuka, and J. Nakamura, 'Effect of carbon substrate materials as a Pt-Ru catalyst support on the performance of direct methanol fuel cells', J. Power Sources, 180, 216 (2008).
  9. G. Wu and B.-Q. Xu, 'Carbon nanotubes supported Pt electrodes for methanol oxidation: A comparison between multi-and single-walled carbon nanotubes', J. Power Sources, 174, 148 (2007). https://doi.org/10.1016/j.jpowsour.2007.08.024
  10. S. Radhakrishnan and A. Adhikari, 'Role of dopant ions in electrocatalytic oxidation of methanol using conducting polypyrrole electrodes', J. Power Sources, 155, 157 (2006). https://doi.org/10.1016/j.jpowsour.2005.03.234
  11. M. Hepel, 'The electrocatalytic oxidation of methanol at finely dispersed platinum nanoparticles in polypyrrole films', J. Electrochem. Soc., 145, 124 (1998). https://doi.org/10.1149/1.1838224
  12. V. Selvaraj, M. Alagar, and K. Sathish Kumar, 'Synthesis and characterization of metal nanoparticles-decorated PPYCNT composite and their electrocatalytic oxidation of formic acid and formaldehyde for fuel cell applications', Applied Catalysis B: Environmental, 75, 129 (2007). https://doi.org/10.1016/j.apcatb.2007.03.012
  13. V. Selvaraj, M. Alagar, and I. Hamerton, 'Electrocatalytic properties of monometallic and bimetallic nanoparticlesincorporated polypyrrole films for electro-oxidation of methanol', J. Power Sources, 160, 940 (2006). https://doi.org/10.1016/j.jpowsour.2006.02.055
  14. J. Li and X. Lin, 'A composite of polypyrrole nanowire Platinum modified electrode for oxygen reduction and methanol oxidation reactions', J. Electrochem. Soc., 154, B1074 (2007). https://doi.org/10.1149/1.2769820
  15. H. Zhao, J. Yang, and Y. Zhang, 'Nanostructured polypyrrole/carbon composite as Pt catalyst support for fuel cell applications', J. Power Sources, 184, 375 (2008). https://doi.org/10.1016/j.jpowsour.2008.03.024
  16. V. Selvaraj and M. Alagar, 'Pt and Pt-Ru nanoparticles decorated polypyrrole/multiwalled carbon nanotubes and their catalytic activity towards methanol oxidation', Electrochemistry Communications, 9, 1145 (2007). https://doi.org/10.1016/j.elecom.2007.01.011
  17. C.-G. Lee, T. Itoh, M. Mohamedi, M. Umeda, I. Uchida, and H.-C. Lim, 'Temperature effect on methanol and ethanol electrooxidation at Pt/C and Pt-Ru/C microporous electrodes', Electrochemistry, 71, 53 (2003).
  18. A. J. Bard and L. R. Faulkner, "Electrochemical Methods" 2nd ed., 167, Wiley, New York (2001).