• 제목/요약/키워드: Conduction Noise

검색결과 83건 처리시간 0.027초

Design of EMI filters for an Induction Motor Drive System with Multi-level inverters (멀티레벨 인버터를 이용한 3상 유도전동기 구동 시스템의 EMI 필터 설계)

  • Kim, Soo-Hong;Ahn, Young-Oh;Bang, Sang-Seok;Kim, Kwang-Seob;Kim, Yoon-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • 제55권5호
    • /
    • pp.265-270
    • /
    • 2006
  • In this paper EMI problems with induction motor drive system using multi-level inverters are investigated. The high power multi-level inverter usually operates with low switching frequency and produces large noises. Generally, EMI consists of the conduction component through source lines and emission component emitted to the space. This conduction component can be classified to the common-mode between source line and ground, and the normal-mode between lines. The EMI filters for the induction motor drive system are designed and implemented to reduce EMI noise. Finally the designed system is verified by the experiment. The experimental results show that both the normal mode and common mode noises are greatly reduced compared to the system without filters.

Thermographic Detection of Surface Crack Using Holomorphic Function of Thermal Field

  • Kim, No-Hyu;Lim, Zong-Soo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • 제32권3호
    • /
    • pp.296-301
    • /
    • 2012
  • This paper describes an analytic method for infrared thermography to detect surface cracks in thin plates. Traditional thermographic method uses the spatial contrast of a thermal field, which is often corrupted by noise in the experiment induced mainly by emissivity variations of target surfaces. This study developed a robust analytic approach to crack detection for thermography using the holomorphic function of a temperature field in thin plate under steady-state thermal conditions. The holomorphic function of a simple temperature field was derived for 2-D heat flow in the plate from Cauchy-Riemann conditions, and applied to define a contour integral that varies depending on the existence and strength of singularity in the domain of integration. It was found that the contour integral at each point of thermal image reduced the noise and temperature variation due to heat conduction, so that it provided a clearer image of the singularity such as cracks.

Hearing Asymmetry among Occupationally Noise-exposed Workers (직업적으로 소음에 노출되는 근로자들에서 청력의 비대칭성)

  • Kim, Wook-Tae;Kim, Dae-Hwan;Lee, Chae-Kwan;Ahn, Jin-Hong;Lee, Chang-Hee;Kim, Hwi-Dong;Kim, Jeong-Ho;Son, Byung-Chul;Lee, Jong-Tae
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • 제17권2호
    • /
    • pp.153-159
    • /
    • 2007
  • Usually equal noise exposure is considered to cause symmetrical hearing loss, but some screening audiometries of employees who were exposed to noise showed asymmetry. Therefore, this study was carried out to evaluate the distribution of asymmetrical hearing loss and the difference of air conduction level between left and right ear at the different frequencies (500, 1,000, 2,000, 3,000, 4,000, 6,000 Hz). Study subjects were 326 male employees who had participated in the noise-specific health examination from May to October, 2002. They were evaluated by otoscopic examination, pure tone audiometry and tympanometry. In all frequencies, hearing threshold level of left ear was worse than right ear. The mean interaural threshold differences between two ears were 0.83 dB at 500 Hz, 1.18 dB at 2,000 Hz, 2.29 dB at 3,000 Hz, 2.18 dB at 4,000 Hz, and statistically significant (p<0.05). The hearing loss of left ear was greater than right ear in occupationally noise-exposed workers. It is believed that left ear was more susceptible to noise damage than right ear

Structural noise mitigation for viaduct box girder using acoustic modal contribution analysis

  • Liu, Linya;Qin, Jialiang;Zhou, Yun-Lai;Xi, Rui;Peng, Siyuan
    • Structural Engineering and Mechanics
    • /
    • 제72권4호
    • /
    • pp.421-432
    • /
    • 2019
  • In high-speed railway (HSR) system, the structure-borne noise inside viaduct at low frequency has been extensively investigated for its mitigation as a research hotspot owing to its harm to the nearby residents. This study proposed a novel acoustic optimization method for declining the structure-borne noise in viaduct-like structures by separating the acoustic contribution of each structural component in the measured acoustic field. The structural vibration and related acoustic sourcing, propagation, and radiation characteristics for the viaduct box girder under passing vehicle loading are studied by incorporating Finite Element Method (FEM) with Modal Acoustic Vector (MAV) analysis. Based on the Modal Acoustic Transfer Vector (MATV), the structural vibration mode that contributes maximum to the structure-borne noise shall be hereinafter filtered for the acoustic radiation. With vibration mode shapes, the locations of maximum amplitudes for being ribbed to mitigate the structure-borne noise are then obtained, and the structure-borne noise mitigation performance shall be eventually analyzed regarding to the ribbing conduction. The results demonstrate that the structural vibration and structure-borne noise of the viaduct box girder mainly occupy both in the range within 100 Hz, and the dominant frequency bands both are [31.5, 80] Hz. The peak frequency for the structure-borne noise of the viaduct box girder is mainly caused by $16^{th}$ and $62^{th}$ vibration modes; these two mode shapes mainly reflect the local vibration of the wing plate and top plate. By introducing web plate at the maximum amplitude of main mode shapes that contribute most to the acoustic modal contribution factors, the acoustic pressure peaks at the field-testing points are hereinafter obviously declined, this implies that the structure-borne noise mitigation performance is relatively promising for the viaduct.

The Effect of Workplace Noise on the Hearing Threshold of Dental Technicians

  • Lee, Ju Hee;Lee, Hye Ran;Lee, Og Kyoung
    • Biomedical Science Letters
    • /
    • 제20권4호
    • /
    • pp.201-208
    • /
    • 2014
  • This study was conducted to investigate hypoacusis due to workplace noise among dental technicians. Pure tone audiometry, impedance audiometry and heart rate variability were measured for 60 dental technicians and office workers in D city from July to November 2013, and a survey on the effects of noise was conducted. SPSS 19.0 was used for statistical analysis. In the result for threshold of pure tone audiometry, the average hearing threshold of left ears in the air conduction (AC) test showed a statistically significant decrease (P=0.019) among dental technicians, who are frequently exposed to workplace noise. The hearing threshold in the AC test for each frequency was significantly different between the two groups at 125 Hz (P=0.012) in right ears and at 1 kHz (P=0.022), 2 kHz (P=0.040), and 8 kHz (P=0.018) in left ears. Dental technicians who had worked for 16 years or longer had a significantly higher incidence of hypoacusis in the right ear (P=0.030) and in the left ear (P=0.010). In impedance audiometry showed a tympanometry result of type A in both the dental technician group and the office worker group.

Finite Element Analysis of Temperature Distribution and Thermally Caused Deformation in Ventilated Disk Brakes

  • Kim, Chung-Kyun
    • Tribology and Lubricants
    • /
    • 제11권5호
    • /
    • pp.150-155
    • /
    • 1995
  • In order to analyze the thermal effects of the rotor models, the finite element technique was used in this study. The length of the hat was investigated as a design parameter. At the start of each brake application the disk surface temperature rapidly increases to a maximum value and then decays due to external cooling and thermal conduction to the hat. The calculated results indicate that the long length of the hat shows the minimum deformation in axial direction, which is related to the thermal problems, coned wear, vibration and noise.

High Efficiency Active Clamp Forward Converter with Synchronous Switch Controlled ZVS Operation (동기 스위치 제어를 통한 영전압 동작 고효율 능동 클램프 포워드 컨버터)

  • Lee, Sung-Sae;Cho, Seong-Wook;Moon, Gun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 전력전자학회 2005년도 전력전자학술대회 논문집
    • /
    • pp.266-268
    • /
    • 2005
  • A new synchronous switch controlled transient current build-up zero voltage switching (TCB-ZVS) forward converter is proposed. The proposed converter is suitable for the low-voltage and high-current applications. The features of the proposed converter are low conduction loss of magnetizing current, no additional circuit for the ZVS operation, high efficiency, high power density and low EMI noise throughout all load conditions.

  • PDF

On eliminating electrochemical impedance signal noise using Li metal in a non-aqueous electrolyte for Li ion secondary batteries

  • Park, Chul-Wan
    • Carbon letters
    • /
    • 제12권3호
    • /
    • pp.180-183
    • /
    • 2011
  • Li metal is accepted as a good counter electrode for electrochemical impedance spectroscopy (EIS) as the active material in Li-ion and Li-ion polymer batteries. We examined the existence of signal noise from a Li-metal counter quantitatively as a preliminary study. We suggest an electrochemical cell with one switchable electrode to obtain the exact impedance signal of active materials. To verify the effectiveness of the switchable electrode, EIS measurements of the solid electrolyte interphase (SEI) before severe $Li^+$ intercalation to SFG6 graphite (at > ca. 0.25 V vs. Li/$Li^+$) were taken. As a result, the EIS spectra without the signal of Li metal were obtained and analyzed successfully for the following parameters i) $Li^+$ conduction in the electrolyte, ii) the geometric resistance and constant phase element of the electrode (insensitive to the voltage), iii) the interfacial behavior of the SEI related to the $Li^+$ transfer and residence throughout the near-surface (sensitive to voltage), and iv) the term reflecting the differential limiting capacitance of $Li^+$ in the graphite lattice.

A Study on the Active EMI Filter for LED Driver (LED 구동장치용 능동 EMI 필터의 실현)

  • Lee, Dong-Ho;Choi, Min-Whan;Park, Chong-Yeun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • 제29권2호
    • /
    • pp.62-68
    • /
    • 2015
  • Recently, LED is being used as various applications such as home lightings, work lightings and so on. EMI noise generated from LED driver have become a problem according to increase the use of LED. In this paper, Active EMI filter composed active and passive components is discribed as a method of solving a problem of EMI. The proposed filter is applied to the 160W LED load to verify performance experimentally. To compare the performance, We did an experiment using the proposed filter and the passive filter on the same 160W LED load and Driver System. As a result, The proposed Active EMI filter attenuated Conduction EMI noise better than any existing passive filter.

A study on the Conducted Noise Reduction in Three-Phase Boost Converter using Random Pulse Width Modulation (Random PWM 기법을 이용한 3상 승압형 컨버터 전도노이즈 저감에 관한 연구)

  • Jung, Dong-Hyo
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • 제51권3호
    • /
    • pp.120-125
    • /
    • 2002
  • The switching-mode power converter has been widely used because of its features of high efficiency and small weight and size. These features are brought by the ON-OFF operation of semiconductor switching devices. However, this switching operation causes the surge and EMI(Electromagnetic Interference) which deteriorate the reliability of the converter themselves and entire electronic systems. This problem on the surge and noise is one of the most serious difficulties in AC-to-DC converter. In the switching-mode power converter, the output voltage is generally controlled by varying the duty ratio of main switch. When a converter operates in steady state, duty ratio of the converter is kept constant. So the power of switching noise is concentrated in specific frequencies. Generally, to reduce the EMI and improve the immunity of converter system, the switching frequency of converter needs to be properly modulated during a rectified line period instead of being kept constant. Random Pulse Width Modulation (RPWM) is performed by adding a random perturbation to switching instant while output-voltage regulation of converter is performed. RPWM method for reducing conducted EMI in single switch three phase discontinuous conduction mode boost converter is presented. The more white noise is injected, the more conducted EMI is reduced. But output-voltage is not sufficiently regulated. This is the reason why carrier frequency selection topology is proposed. In the case of carrier frequency selection, output-voltage of steady state and transient state is fully regulated. A RPWM control method was proposed in order to smooth the switching noise spectrum and reduce it's level. Experimental results are verified by converter operating at 300V/1kW with 5%~30% white noise input. Spectrum analysis is performed on the Phase current and the CM noise voltage. The former is measured with Current Probe and the latter is achieved with LISN, which are connected to the spectrum analyzer respectively.