• Title/Summary/Keyword: Condenser Microphone

Search Result 20, Processing Time 0.021 seconds

A novel miniature condenser microphone with a hinge diaphragm (힌지구조를 갖는 초소형 콘덴서 마이크로폰)

  • Kim, Hye-Jin;Lee, Sung-Q;Park, Kang-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.174-178
    • /
    • 2007
  • This paper presents a novel, highly sensitive condenser microphone with a flexure hinge diaphragm. We used the finite-element analysis (FEA) to evaluate the mechanical and acoustic performance of the condenser microphone with a hinge diaphragm. And we fabricated the miniature condenser microphones with area of 1.5 mm${\times}$1.5 mm. From the simulation results, we confirmed that the maximum displacements at the center of flexure hinge diaphragms are several hundred times, compared with flat diaphragms. The sensitivities of fabricated miniature microphones are about $12.87{\mu}V/Pa$ at 1 kHz under a low bias voltage of 1 V, and the frequency response is flat upto 13 kHz.

Design and fabrication of condenser microphone with rigid backplate and vertical acoustic holes using DRIE and wafer bonding technology (기판접합기술을 이용한 두꺼운 백플레이트와 수직음향구멍을 갖는 정전용량형 마이크로폰의 설계와 제작)

  • Kwon, Hyu-Sang;Lee, Kwang-Cheol
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.62-67
    • /
    • 2007
  • This paper presents a novel MEMS condenser microphone with rigid backplate to enhance acoustic characteristics. The MEMS condenser microphone consists of membrane and backplate chips which are bonded together by gold-tin (Au/Sn) eutectic solder bonding. The membrane chip has 2.5 mm${\times}$2.5 mm, $0.5{\mu}m$ thick low stress silicon nitride membrane, 2 mm${\times}$2 mm Au/Ni/Cr membrane electrode, and $3{\mu}m$ thick Au/Sn layer. The backplate chip has 2 mm${\times}$2 mm, $150{\mu}m$ thick single crystal silicon rigid backplate, 1.8 mm${\times}$1.8 mm backplate electrode, and air gap, which is fabricated by bulk micromachining and silicon deep reactive ion etching. Slots and $50-60{\mu}m$ radius circular acoustic holes to reduce air damping are also formed in the backplate chip. The fabricated microphone sensitivity is $39.8{\mu}V/Pa$ (-88 dB re. 1 V/Pa) at 1 kHz and 28 V polarization voltage. The microphone shows flat frequency response within 1 dB between 20 Hz and 5 kHz.

Design and Fabrication of MEMS Condenser Microphone Using Wafer Bonding Technology (기판접합기술을 이용한 MEMS 컨덴서 마이크로폰의 설계와 제작)

  • Kwon, Hyu-Sang;Lee, Kwang-Cheol
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.12 s.117
    • /
    • pp.1272-1278
    • /
    • 2006
  • This paper presents a novel MEMS condenser microphone with rigid backplate to enhance acoustic characteristics. The MEMS condenser microphone consists of membrane and backplate chips which are bonded together by gold-tin(Au/Sn) eutectic solder bonding. The membrane chip has $2.5mm{\times}2.5mm$, 0.5${\mu}m$ thick low stress silicon nitride membrane, $2mm{\times}2mm$ Au/Ni/Cr membrane electrode, and 3${\mu}m$ thick Au/Sn layer. The backplate chip has $2mm{\times}2mm$, 150${\mu}m$ thick single crystal silicon rigid backplate, $1.8mm{\times}1.8mm$ backplate electrode, and air gap, which is fabricated by bulk micromachining and silicon deep reactive ion etching. Slots and $50{\sim}60{\mu}m$ radius circular acoustic holes to reduce air damping are also formed in the backplate chip. The fabricated microphone sensitivity is 39.8 ${\mu}V/Pa$(-88 dB re. 1 V/Pa) at 1 kHz and 28 V polarization voltage. The microphone shows flat frequency response within 1 dB between 20 Hz and 5 kHz.

A measurement of the pressure fluctuation by using the condenser microphone (콘덴서 마이크로폰을 이용한 압력변동성분의 측정)

  • 윤재건
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.18-23
    • /
    • 1989
  • 본 기고에서는 필자의 경험을 바탕으로 콘덴서 마이크로폰(condenser microphone)을 압력측정 프로우브에 직접 연결하여 압력변동성분을 측정하는 방법을 소개하고, 이 방법의 적용예와 문제점을 검토하고자 한다.

  • PDF

Precision Calibration of 1-Inch Standard Condenser Microphone by Reciprocity Technique (가역원리에 의한 1인치 표준 컨덴서 마이크로폰의 정밀교정)

  • Suh Sang Joon;Moon Jae Jho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.8 no.5
    • /
    • pp.23-32
    • /
    • 1989
  • The calibration of 1 inch standard condenser microphone is done by the reciprocity calibration method. There are two kinds of reciprocity calibration, free-field calibration and pressure calibration. The pressure sensitivities of the three 1 inch condenser microphones are determined by pressure calibration. The accuracy of the pressure sensitivity of the microphone depends on the accuracies of the voltage and dimension measurements as well as the various corrections for the coupler. If the individual accuracies for the measurements and corrections are achieved, it is estimated that the over-all accuracy is approximately 0.05dB at low and middle frequencies decreasing to about 0.ldB over 10kHz.

  • PDF

Development of sound level meter provided with ultra-low SPL measuring function -Creation and evaluation of super-silent spaces-

  • Kawakami, Fukushi;Terazono, Shinichi;Lee, Ho-Gi
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.05a
    • /
    • pp.760-761
    • /
    • 2010
  • As is widely known, SPL measurement using sound level meter (SLM) is limited to higher than 30 dBA, because of the self-noise n(x) of condenser microphone (CM). The authors confirmed n(x) is composed of 3 kinds, each of which is stable enough under the condition -20 ~ +50 deg C to eliminate the influence of n(x) by subtracting its energy from the squared input signal in the integration process, as well as to develop new type of SLM with ultra-low SPL measuring function. This is so-called "0-dB SLM" since it enables to measure SPL down to around 0 dB-SPL. The RMS of n(x) is acquired and stored in ROM in advance, by placing CM in the supersilent space or by using dummy microphone with equivalent capacitance before the actual measurements.

  • PDF

A Study for the Sound Reinforcement System in Conference Room Using Linear Array Microphone (직선배열 마이크로폰을 사용한 회의용확성장치에 관한 연구)

  • ;Masa-to, Abe;Ken-Ich, Kido
    • The Journal of the Acoustical Society of Korea
    • /
    • v.4 no.1
    • /
    • pp.35-42
    • /
    • 1985
  • This paper suggests a method on the use of very long linear array microphone in order to obtain clear loud sound reinforcement system without howling. According to the results of the theoretical investigation, we have made that a linear array microphone. This is made of one hundred small condenser microphone having 2 cm of spatical period. To estimate the effect of sound reinforcement system physically and subjectively, four cases have been experimented : In case of using no sound reinforcement, nondirectivity microphone, rectangular window and Hnning window in linear array microphone. The experimental results prove that the case of Hnning window in linear array microphone is more excellent.

  • PDF

Study of Frequency Response Characteristics in Microphone Used by Optical Sensor

  • Yeom, Keong-Tae;Kim, Kwan-Kyu;Kim, Yong-Kab
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.3
    • /
    • pp.128-133
    • /
    • 2008
  • In this paper, in order to analyze property of frequency response in microphone using optical sensor, acousto-optic sensor system has been implemented. The capacitance microphone and fiber-optic transmission path type fiber-optic microphone (FOM) have weaknesses in directivity, size, weight, and price. However suggested optical microphone can be constituted by cheap devices, so it has many benefits like small size, light weight, high directivity, etc. Head part of optical microphone which is suggested in this paper is movable back and forth by sound pressure with the attached reflection plate. Operating point has also been determined by measuring the response characteristics. The choosing the point, which has maximum linearity and sensitivity has changing the distance between optical head and vibrating plate. We measured the output of the O/E transformed signal of the optical microphone while frequency of sound signal is changed using sound measurement /analysis program, "Smaart Live" and "USBPre", which are based on PC, and compared the result from an existing capacitance microphone. The measured optical microphone showed almost similar output characteristics as those of the compared condenser microphone, and its bandwidth performance was about 4 kHz at up to 3 dB.

Analysis of Frequency Response Characteristics in Optical Microphone (광 마이크로폰의 주파수 응답특성 분석)

  • Yeom, Keong-Tae;Kim, Kwan-Kyu;Heh, Do-Geun;Kim, Yong-Kab
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.6
    • /
    • pp.8-15
    • /
    • 2008
  • In this paper, in order to analyze property of frequency response in optical microphone, system was implemented. The capacitance microphone and fiber-optic transmission path type fiber-optic microphone (FOM) have weaknesses in directivity, size, weight, and price. However suggested optical microphone can be constituted by cheap devices, so it has many benefits like small size, light weight, high directivity, etc. Head part of optical microphone which is suggested in this paper is movable back and forth by sound pressure with the attached reflection plate. Operating point is determined by measuring the respond characteristics and choosing the point on which has maximum linearity and sensitivity while changing the distance between optical head and vibrating plate. We measured the output of the O/E transformed signal of the optical microphone while frequency of sound signal is changed using sound measurement/analysis program, Smaart Live and USBPre, which are based on PC, and compared the result from an existing capacitance microphone. The measured Optical microphone showed almost similar output characteristics as those of the compared condenser microphone, and its bandwidth performance was about 300[Hz]-3[kHz] at up to 3 [dB].

Design of Implantable Microphone for Artificial Middle Ear System

  • Kim Min-Kyu;Lim Hyung-Gyu;Yoon Young-Ho;Lee Jyung-Hyun;Park Il-Yong;Song Byung-Seop;Kim Myoung-Nam;Cho Jin-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.3
    • /
    • pp.139-144
    • /
    • 2005
  • An implantable microphone that can be utilized as part of a totally implantable hearing aid is designed and implemented. The proposed microphone is implanted in the center of the pinna, and designed to ensure the speech frequency range and the appropriate sensitivity. The characteristics of the proposed microphone are evaluated using a finite element analysis (FEA). The microphone is composed of a small electric condenser microphone, titanium case 6.2mm in diameter and 3mm high, and $10{\mu}m$ SUS316L vibrating membrane in contact with hypodermic tissue to maintain the sensitivity of the microphone. The microphone components are all made of biocompatible materials, then the assembled microphone is hermetically sealed using a polymer and ceramic. Experiments with the fabricated microphone confirm an operational bandwidth of up to 5kHz without any decline of sensitivity in 6mm of hypodermic tissue.