• Title/Summary/Keyword: Concrete recycling

Search Result 589, Processing Time 0.037 seconds

Feasibility Study on Recycling of Concrete Waste from NPP Decommissioning Through Literature Review (기존 문헌 분석을 통한 원전 콘크리트 해체 폐기물 재활용 가능성에 대한 연구)

  • Cheon, Ju-Hyun;Lee, Seong-Cheol;Kim, Chang-Lak;Park, Hong-Gi
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.2
    • /
    • pp.115-122
    • /
    • 2018
  • In this paper, the feasibility of recycling concrete waste as a method to reduce final disposal amount of wastes generated through decommissioning of nuclear power plant has been analyzed based on experimental results of existing literature. When recycled concrete waste was used as recycled aggregate, it was investigated through literature that the concrete strength decreased by 30~40% depending on the mixing ratio. It was also investigated that concrete with recycled aggregate can be used as a structural material when the quality of recycled aggregate is well managed since no significant problem was found. When recycled cement produced from concrete waste was used, the strength of concrete or mortar decreased considerably as the recycled cement content increased. Therefore, it can be concluded that concrete or mortar with recycled cement can be used as a filling material for final disposal of large radioactive waste rather than for structural use. This paper is expected to be useful for reduction on disposal volume and decommissioning cost for nuclear power plants such as Kori 1.

Image and Phase Analysis of Low Carbon Type Recycled Cement Using Waste Concrete Powder (폐콘크리트 미분말을 사용한 저탄소형 시멘트의 조직 및 상분석)

  • Song, Hun;Shin, Hyeon-Uk;Lee, Jong-Kyu;Chu, Yong-Sik;Park, Dong-Chan
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.4
    • /
    • pp.314-320
    • /
    • 2014
  • Although the cement industry serves as the cornerstone of the construction industry by supplying one of its fundamental materials, it confronts new environmental challenges due to the problem of the $CO_2$ generated from raw materials and fuel used in the cement manufacturing process. Also, concrete structures can be decomposed and reused as construction materials. Simply in terms of the cyclic processing of $CO_2$, recycling waste concrete to manufacture recycled aggregate or recycling waste concrete powder, which is the material for cement can be considered optimally environment-friendly practices. This study contributes to the aim of manufacturing high value added materials that exploits the chemical properties of the waste concrete powder. From the research results, waste concrete powder is feasible to use to produce low carbon type recycled cement.

Properties of Fresh Concrete with Recycled Coarse and Fine Aggregates (순환(循環)굵은/잔골재(骨材)를 사용한 굳지 않은 콘크리트의 특성(特性))

  • Choi, Ki-Sun;You, Young-Chan;Kim, Keung-Hwan;Lee, Do-Heun
    • Resources Recycling
    • /
    • v.18 no.3
    • /
    • pp.20-26
    • /
    • 2009
  • The objective of this study is to investigate the properties of fresh concrete with recycled coarse and fine aggregates. Four different kinds of aggregate with natural, recycled aggregates were prepared. The concrete mixtures were produced with test parameters of replacement ratio of recycled aggregate. The properties of the fresh concrete were measured by means of slump and air content according to elapsed time. Quality control method to maintain the constant total mixing water for recycled aggregate concrete was suggested. The all concrete mixtures were produced with approximately the same slump on the job site after an hour. Test results indicated that compressive strength of concrete with constant slump is not affected by the replacement ratio of recycled aggregate. Also the practical way for the quality control of recycled aggregate concrete is to maintain the constant total mixing water.

Analysis of CO2 Emission and Economic of Rural Roads Concrete Pavement Using Air Cooled Slag Aggregate (괴재슬래그 골재를 적용한 농촌도로 포장 콘크리트의 CO2 배출량 및 경제성 분석)

  • Ahn, Byong Hwan;Kim, Hwang-Hee;Lee, Jae-Young;Cha, Sang-Sun;Lee, Goen Hee;Park, Chan-Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.6
    • /
    • pp.25-34
    • /
    • 2022
  • Recently, as a study to air cooled slag, which is an industrial by-product, research is being proceed to use it as a material for concrete. In this study, the workability, air content, compressive strength, CO2 emission and economic feasibility of concrete were analyzed when air cooled slag, an industrial by-product, was applied as aggregate for rural road pavement concrete. As a result of the analysis, both the slump and air contents test results of concrete using the air cooled slag aggregate satisfied the target values, and the compressive strength was increased when the air cooled slag aggregate was used compared to when the natural aggregate was applied. On the other hand, the largest amount of CO2 emission by raw material was found in aggregate. The carbon emission of rural road pavement concrete using air cooled slag aggregate increased when the Korean LCI DB was applied compared to when natural and crushed aggregates were applied, and the emission decreased when the German LCI DB was applied. This results are due to differences in the viewpoints of industrial by-products. However, considering the recycling of waste from the environmental aspect, it is necessary to simultaneously review the CO2 emission and recycling aspects in the future. Also, the application of air cooled slag aggregate had the effect of improving the economic efficiency of rural road pavement concrete about 18.75%.

Effect of the Pozzolanic Cement on Concrete Strengths with Recycled Aggregate (재생골재를 사용한 콘크리트의 강도에 미치는 포졸란 시멘트 효과)

  • 문대중;임남웅;김양배
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.217-220
    • /
    • 2001
  • Due to the tendency of increase in demolished-concrete produced by alteration and deterioration of concrete structures, recycling of those demolished-concrete is necessary to solve the exhaustion of natural aggregate, in order to save resources and protect environment, especially being want of resources in Korea. For this purpose, concrete made with the pozzolanic cement and recycled aggregate was tested for compressive and tensile strength. The pozzolanic cement was a mixture of OPC(Ordinary Portland Cement) and pozzolans such as fly ash, other siliceous materials and early rapid hardening cement(ERC). It was found that the compressive strength of the pozzolanic cement was enhanced when 0.75% of ERC was dozed, as compared with OPC mortar. It was also shown that compressive and tensile strength of concrete with recycled aggregate and pozzolanic cement were higher than those of concrete with crushed stones and OPC. It was concluded that the pozzolanic cement influenced on the increase of concrete strengths with recycled aggregate.

  • PDF

An Experimental Study on the Reuse of Recycling Water of Reacy Mixed Concrete such as Concrete Water(II) - A Case Study on the Concrete - (콘크리트용 용수로써 레미콘 회수수의 재활용에 관한 연구(II) -콘크리트 적용실험을 중심으로-)

  • 김기철;윤기원;한천구;반호용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.105-110
    • /
    • 1994
  • This study is applying to the concrete with the variation of the variation of the sludge contents, to analyze the properties of the fresh concrete and the mechanical properties of hardened concrete give the reference data of actual ready mixed concrete. To the result of this study in the condition of W/C 60%. As a result of this experiment and considering the drying shrinkage, it is thought that in using sludge, the less amount of sludge than 4% can produce of good quality concrete.

  • PDF

A Study on the application of the fine recycled concrete aggregate in the PHC piles (고품질 순환잔골재를 사용한 PHC파일의 적용 가능성 연구)

  • Shim, Jong-Sung;Park, Cheol-Woo;Park, Sung-Jae;Kim, Tae-Gwang;Ma, Chang-Nam
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.345-348
    • /
    • 2006
  • Along with recent improvement of recycling technique, the quality of the recycled concrete aggregate have become very competitive to the natural concrete aggregate. Therefore, a practical use of the recycled concrete aggregate may be possible for structural members. Majority studies about the recycled concrete aggregate was emphasized a limitation of fundamental study concerned with a strength characteristics and durability of the recycled aggregate concrete. Therefore, for the extension of application of recycled concrete aggregate, this investigation verifies the strength characteristics and structural performances of PHC piles used with coarce and fine recycled concrete aggregate.

  • PDF

Recent Status on the Recycling of Construction Waste and Research Trends - The Current Situation of Recycling Technology for Waste Resources in Korea(4) - (건설폐기물(建設廢棄物)의 리싸이클링 현황(現況)과 연구동향(硏究動向) - 국내자원(國內資源)의 유효이용(有效利用)을 위한 처리(處理) 및 회수기술동향(回收技術動向)(4) -)

  • Oh, Jae-Hyun;Kim, Mi-Sung;Shin, Hee-Duck;Min, Ji-Won
    • Resources Recycling
    • /
    • v.17 no.2
    • /
    • pp.16-29
    • /
    • 2008
  • According to the statistical data of the Ministry of Environment, 47million tons of construction waste were generated, and 96.7% of them was recycled in 2005. However, the recycled products seem to be remained under low quality. Because mixed demolition and construction waste, so called DC Waste, including concrete, brick, plaster, lumber, plastics building materials, paper and some dirt and stone, is very variable and difficult to estimate its exact composition, it is regarded as having little or no value to the construction industry. 'The Research group on recycling of construction waste' was started by the Housing & Urban Research Institute(KNHC), which is sponsored as a large scale national project by the Ministry of Construction and Transportation. This research group intends to establish recycling system through planing, processing, developing practical technology, and eventually contribute to save natural resource and to vitalize the industry. In this paper an overview of DC waste management and recycling technology is given in some detail. Particularly, "recycling law of construction waste" and recent research trends on recycling of construction waste are discussed.

Compressive strength properties of concrete using Waste Concrete Powder as a cement substitute (폐콘크리트 미분말을 시멘트 대체제로 활용한 콘크리트의 압축강도 특성)

  • Kim, Young-Kyu;Jung, Ui-In;Kim, Bong-Joo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.128-129
    • /
    • 2015
  • Recently, a number of problems due to the CO2 emissions are occurred. Therefore, it is a movement to restrict this activity. The research is being carried out steadily for recycling waste concrete from the cement paste based fine powder, which accounts for over 60% of construction waste as a recycled cement. In this study, the conclusion was obtained as a result of the research conducted, and then, replacing the main material of cement concrete to solve the above problem by reducing the amount of cement used Waste Concrete Powder. The more concrete results page replacement ratio of fine powder increases, the flow value of the concrete is lowered, the strength was remarkably reduced when the page Concrete Powder.

  • PDF

An Experimental Study on Properties of Steel Fiber Reinforced Fresh Concrete Using Waste concrete (폐콘크리트를 이용한 굳지 않은 강섬유 보강 콘크리트의 특성에 관한 실험적 연구)

  • 구봉근;김창운;박재성
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.245-248
    • /
    • 1999
  • In our standard specification, the specific provision of steel fiber pavement concrete didn't describe yet. The purpose of this study presents criteria of recycled aggregate steel fiber pavement concrete including standard crushed stone steel fiber pavement concrete. This study examined a lot of factors which influence consistency of SFRC(Steel Fibre Reinforced Concrete) including crush stone and recycled aggregate. According to this examination, this study decided optimum S/α and W which are essential to pavement concrete mix proportion. Come to the conclusion, this study is expected to effect economically in recycling of resources and bring to affirmative result in aspect of environment.

  • PDF