• 제목/요약/키워드: Concrete confinement

Search Result 650, Processing Time 0.024 seconds

A Study on the Strength and Ductility Effect of High-Strength Concrete Columns Confined by Tied Hoops (띠근에 의한 고강도 콘크리트 기둥부재의 강도 및 연성효과에 관한 연구)

  • 박훈규;송재호;한상묵;장일열
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.609-614
    • /
    • 1998
  • Lateral pressure by tied reinforcement greatly enhances the maximum strength and ductility of columns under concentric loading. The lateral confinement effects will be improves ductility of high-strength concrete. The major purpose of this paper is to study on the improvements of maximum strength and strain at the point of tied high-strength concrete columns subject to axial loads. For this purpose, this study collected the other analytical results and the experimental data that has been performed by a lot of worldwide researchers and also analyzed it statistically. As the result, the theoretical equation for predict maximum strength and strain at the point was proposed. It is based on calculation of lateral confinement pressure generate from tensile that develop in transverse reinforcement.

  • PDF

Evaluate Anchorage Strength of High Relative Rib Area Bars Using Hook Test Specimens (갈고리 시험체를 이용한 높은마디면적 철근의 정착성능)

  • Seo Dong Min;Hong Gi Suop;Choi Dong Uk;Choi Oan Chul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.327-330
    • /
    • 2005
  • Bond failure of reinforcing bar generally take place by splitting of the concrete cover as bond force between concrete and reinforcing bars exceeds the confinement of the concrete cover and reinforcement. However, the confinement force in practice has a limitation. Thus, the only variable is the bearing area corresponding to the change of bond force. In this study, to the evaluate anchorage strength of high relative rib area bars, hook bond test specimens are tested and the results are discussed. Higher rib height bars when bars are confined showed higher anchorage strength than lower rib higher bars.

  • PDF

Analysis of circular steel tube confined UHPC stub columns

  • Hoang, An Le;Fehling, Ekkehard
    • Steel and Composite Structures
    • /
    • v.23 no.6
    • /
    • pp.669-682
    • /
    • 2017
  • The use of ultra high performance concrete (UHPC) in composite columns offers numerous structural benefits, and has received recent research attention. However, the information regarding the behavior of steel tube confined concrete (STCC) columns employing UHPC has been extremely limited. Thus, this paper presents an overview of previous experimental studies on circular STCC columns with taking into account various concrete strengths to point out their distinctive features. The effect of the confinement factor and the diameter to thickness ratio on both strength and ductility in circular STCC columns employing UHPC was investigated. The applicability of current design codes such as EC4, AISC, AIJ and some available analytical models for concrete confined by steel tube was also validated by the comparison of ultimate loads between the prediction and the test results of Schneider (2006) and Xiong (2012). To predict the stress-strain curves for confined UHPC in circular STCC stub columns, a simplified model was proposed and verified by the comparison with experimental stress-strain curves.

Damage-based stress-strain model of RC cylinders wrapped with CFRP composites

  • Mesbah, Habib-Abdelhak;Benzaid, Riad
    • Advances in concrete construction
    • /
    • v.5 no.5
    • /
    • pp.539-561
    • /
    • 2017
  • In this study, the effects of initial damage of concrete columns on the post-repair performance of reinforced concrete (RC) columns strengthened with carbon-fiber-reinforced polymer (CFRP) composite are investigated experimentally. Four kinds of compression-damaged RC cylinders were reinforced using external CFRP composite wraps, and the stress-strain behavior of the composite/concrete system was investigated. These concrete cylinders were compressed to four pre-damaged states including low -level, medium -level, high -level and total damage states. The percentages of the stress levels of pre-damage were, respectively, 40, 60, 80, and 100% of that of the control RC cylinder. These damaged concrete cylinders simulate bridge piers or building columns subjected to different magnitudes of stress, or at various stages in long-term behavior. Experimental data, as well as a stress-strain model proposed for the behavior of damaged and undamaged concrete strengthened by external CFRP composite sheets are presented. The experimental data shows that external confinement of concrete by CFRP composite wrap significantly improves both compressive strength and ductility of concrete, though the improvement is inversely proportional to the initial degree of damage to the concrete. The failure modes of the composite/damaged concrete systems were examined to evaluate the benefit of this reinforcing methodology. Results predicted by the model showed very good agreement with those of the current experimental program.

Characteristics of Bond Behavior According to Confinement and Stiffness Ratios of External Confining Jackets (외부구속자켓의 구속비와 강도비에 따른 콘크리트 부착거동의 특성)

  • Choi, Eunsoo;Jung, Chunsung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.1
    • /
    • pp.87-94
    • /
    • 2014
  • This study analyzes the characteristics of bond behavior of concrete, which is confined by external jackets such as shape memory alloy (SMA) and steel, according to confinement and stiffness ratios of the external jackets. For this purpose, SMA wires with 1.0 mm diameter and steel plates with 1.0 and 1.5 thickness are used to induce difference on confinement and stiffness ratios and, then, bond strength and behavior are analyzed considering the two factors. When external jakcets are used for the concrete cylinders, bond strengths of specimens increase and their bond failures are transferred from splitting failure to pull-out failure and, thus, the external jackets show confining effect. Bond strenght of concrete increase with increasing confinement and stiffness ratios of the external jackets. However, maximal circumferential strains decrease linearly with increasing the two values.

Non-linear Behavior of New Type Girder Filled by High-Strength Concrete (신형식 거더의 고강도 콘크리트 적용 시 비선형 거동 분석)

  • Choi, Sung-Woo;Lee, Hak;Kong, Jung-Sik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.217-220
    • /
    • 2008
  • Recently, many studies about a high-strength concrete and composite structures are being progressed to get the more economic and stable result in the construction of structure all over the world. One of those studies is about CFTA(Concrete Filled and Tied Steel Tubular Arch) girder that applies an arch structure and a pre-stressed structure to CFT(Concrete Filled Steel Tubular) Structure which is filled with a concrete and improve the stiffness and strength of the structure by the confinement effect of fillers to maximize the efficiency of structure and economic. In this study, non-linear behavior of CFTA girders filled with a general concrete and the high-strength concrete respectively were analyzed by using ABAQUS 6.5-1 and results were compared.

  • PDF

Structural Performance of Concrete-encased Steel Columns using 800MPa Steel and 100MPa Concrete (800MPa 강재 및 100MPa 콘크리트를 적용한 매입형 합성기둥의 구조성능)

  • Kim, Chang-Soo;Park, Hong-Gun;Choi, In-Rak;Chung, Kyung-Soo;Kim, Jin-Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.5
    • /
    • pp.497-509
    • /
    • 2010
  • Five concrete-encased steel columns using high-strength steel($f_{ys}$=801MPa) and high-strength concrete($f_{ck}$=97.7MPa) were tested to investigate the eccentric axial load-displacement relationship. Test parameters included the type, yield strength, and spacing of lateral reinforcement, and also the eccentricity of axial load. To analyze the behavior of the column specimens, the nonlinear sectional analysis using strain-compatibility and confinement effect was performed. To examine the applicability of existing design codes for the composite sections using high-strength materials, the test results were also compared with the predictions by the nonlinear analysis and the design codes. The confinement effect of lateral reinforcement increased the ductility of concrete, and the moment capacity of the column specimens increased with the ductility of concrete. The prediction by the nonlinear analysis gave good agreement with the test results. On the other hand, the ACI 318 neglecting lateral confinement effect underestimated the strength of the column specimens, and the Eurocode 4 using complete plastic capacity of steel section overestimated.

Compressive strength prediction of CFRP confined concrete using data mining techniques

  • Camoes, Aires;Martins, Francisco F.
    • Computers and Concrete
    • /
    • v.19 no.3
    • /
    • pp.233-241
    • /
    • 2017
  • During the last two decades, CFRP have been extensively used for repair and rehabilitation of existing structures as well as in new construction applications. For rehabilitation purposes CFRP are currently used to increase the load and the energy absorption capacities and also the shear strength of concrete columns. Thus, the effect of CFRP confinement on the strength and deformation capacity of concrete columns has been extensively studied. However, the majority of such studies consider empirical relationships based on correlation analysis due to the fact that until today there is no general law describing such a hugely complex phenomenon. Moreover, these studies have been focused on the performance of circular cross section columns and the data available for square or rectangular cross sections are still scarce. Therefore, the existing relationships may not be sufficiently accurate to provide satisfactory results. That is why intelligent models with the ability to learn from examples can and must be tested, trying to evaluate their accuracy for composite compressive strength prediction. In this study the forecasting of wrapped CFRP confined concrete strength was carried out using different Data Mining techniques to predict CFRP confined concrete compressive strength taking into account the specimens' cross section: circular or rectangular. Based on the results obtained, CFRP confined concrete compressive strength can be accurately predicted for circular cross sections using SVM with five and six input parameters without spending too much time. The results for rectangular sections were not as good as those obtained for circular sections. It seems that the prediction can only be obtained with reasonable accuracy for certain values of the lateral confinement coefficient due to less efficiency of lateral confinement for rectangular cross sections.

Experimental study on axial compressive behavior of hybrid FRP confined concrete columns

  • Li, Li-Juan;Zeng, Lan;Xu, Shun-De;Guo, Yong-Chang
    • Computers and Concrete
    • /
    • v.19 no.4
    • /
    • pp.395-404
    • /
    • 2017
  • In this paper, the mechanical property of CFRP, BFRP, GFRP and their hybrid FRP was experimentally studied. The elastic modulus and tensile strength of CFRP, BFRP, GFRP and their hybrid FRP were tested. The experimental results showed that the elastic modulus of hybrid FRP agreed well with the theoretical rule of mixture, which means the property of hybrid composites are linear with the volumes of the corresponding components while the tensile strength did not. The bearing capacity, peak strain, stress-strain relationship of circular concrete columns confined by CFRP, BFRP, GFRP and hybrid FRP subjected to axial compression were recorded. And the confinement effect of hybrid FRP on concrete columns was analyzed. The test results showed that the bearing capacity and ductility of concrete columns were efficiently improved through hybrid FRP confinement. A strength model and a stress-strain relationship model of hybrid FRP confined concrete columns were proposed. The proposed stress-strain model was shown to be capable of providing accurate prediction of the axial compressive strength of hybrid FRP confined concrete compared with Teng et al. (2002) model, Karbhari and Gao (1997) model and Miyachi et al. (1999) model. The modified stress-strain model was also suitable for single FRP confinement cases and it was so concise in form and didn't have piecewise fitting, which would be easy for use in structural design.

Self-consolidating concrete filled steel tube columns - Design equations for confinement and axial strength

  • Lachemi, M.;Hossain, K.M.A.;Lambros, V.B.
    • Structural Engineering and Mechanics
    • /
    • v.22 no.5
    • /
    • pp.541-562
    • /
    • 2006
  • This paper compares the performance of axially loaded concrete filled steel tube (CFST) columns cast using a conventionally vibrated normal concrete (NC) and a novel self-consolidating concrete (SCC) made with a new viscosity modifying admixture (VMA). A total of sixteen columns with a standard compressive strength of about 50 MPa for both SCC and NC were tested by applying concentric axial load through the concrete core. Columns were fabricated without and with longitudinal and hoop reinforcement (Series I and Series II, respectively) in addition to the tube confinement. The slenderness of the columns expressed as height to diameter ratio (H/D) ranged between 4.8 and 9.5 for Series CI and between 3.1 and 6.5 for Series CII. The strength and ductility of SCC columns were found comparable to those of their NC counterparts as the maximum strength enhancement in NC columns ranged between 1.1% and 7.5% only. No significant difference in strain development was found due to the presence of SCC or NC or due to the presence of longitudinal and hoop reinforcement. Biaxial stress development in the steel tube as per von Mises yield criterion showed similar characteristics for both SCC and NC columns. The confined strength ($f^{\prime}_{cc}$) of SCC was found to be lower than that of NC and $f^{\prime}_{cc}$ also decreased with the increase of slenderness of the columns. Analytical models for the prediction of confined concrete strength and axial strength of CFST columns were developed and their performance was validated through test results. The proposed models were found to predict the axial strength of CFST columns better than existing models and Code based design procedures.