• Title/Summary/Keyword: Concrete box-girder bridge

Search Result 213, Processing Time 0.021 seconds

Measurement and Proposed Design Specification of Temperature Distribution in the Concrete Pylon (콘크리트 주탑의 온도분포 계측 및 설계규정 제안)

  • Hwang, Eui-Seung;Shim, Jae-Soo;Kim, Do-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • This paper deals with monitoring and analysis of temperature measurement data in concrete pylon of long span cable bridges. During the construction of Geoga Bridge in Busan-Geoje Fixed Link Project, temperature sensors were installed in several sections of hollow box type concrete pylon and temperatures along the depth of the four sides of the section have been recorded along with ambient temperature. Effects of temperature distribution on the pylon are analysed using actual measured data and results are compared with the design guideline. It was found that the temperature load model for concrete girder can be applied to box type concrete pylon. Structural analysis of the pylon due to variation of temperature distribution during the construction is performed using 3D modelling and FE program and the maximum displacements of east-west and north-south side were calculated as 0.056m and 0.121m, respectively.

Development of the Approximate Cost Estimating Model for PSC Box Girder Bridge based on the Breakdown of Standard Work (대표공종 기반의 PSC Box 교량 상부공사 개략공사비 산정모델에 관한 연구)

  • Kim, Sang-Bum;Cho, Ji-Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.791-800
    • /
    • 2013
  • Needs for developing a better way of cost estimating process for public construction projects have been widely recognized. Those needs are mainly from the early phases of the project through the construction life cycle due to the its importance to the control process. In contrast to the traditional estimating method based on unit-price references, this research utilized this following process. The first step is analyzing the real cost data from actual cost activities (2000~2010) about the statement of P.S.C(Prestressed Concrete) Box Girder Bridge. The collected data was broken into four categories based on technical construction methods such as I.L.M(Incremental Launching Method), M.S.S(Movable Scaffolding System), F.S.M(Full Staging Method), and F.C.M(Free Cantilever Method). The second, actual design documents including the actual cost estimating documents, drawings and specifications were carefully reviewed to cluster the cost itemized statement from four categories. It was also attempted to seek the proper breakdown of standard works that are responsible for more than 95 percentage in each categories in terms of its cost. The third, this research comes up the index for standard unit materials and unit price of standard work and develops the approximate estimating model applying for the specification(length and breadth of bridges) per square area that the user takes as well as suggests the practical application plan within the original time alloted.

The smart PFD with LRB for seismic protection of the horizontally curved bridge

  • Kataria, N.P.;Jangid, R.S.
    • Smart Structures and Systems
    • /
    • v.17 no.5
    • /
    • pp.691-708
    • /
    • 2016
  • Recently, number of smart material are investigated and widely used in civil construction and other industries. Present study investigates the application of smart semi-active piezoelectric friction damper (PFD) made with piezoelectric material for the seismic control of the horizontally curved bridge isolated with lead rubber bearing (LRB). The main aim of the study is to investigate the effectiveness of hybrid system and to find out the optimum parameters of PFD for seismic control of the curved bridge. The selected curved bridge is a continuous three-span concrete box girder supported on pier and rigid abutment. The PFD is located between the deck and abutments or piers in chord and radial directions. The bridge is excited with four different earthquake ground motions with all three components (i.e. two horizontal and a vertical) having different characteristics. It is observed that the use of semi-active PFD with LRB is quite effective in controlling the response of the curved bridge as compared with passive system. The incorporation of the smart damper requiring small amount of energy in addition with an isolation system can be used for effective control the curved bridge against the dynamic loading.

Evaluation of Cable Tension Forces Using Vibration Method for a Cable-stayed Bridge under Construction (진동법을 이용한 사장교의 시공 중 장력 평가)

  • Cho, Soojin;Yun, Chung-Bang;Sim, Sung-Han
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.2
    • /
    • pp.38-44
    • /
    • 2014
  • When a cable-stayed bridge is under construction, the cable tension that changes according to the construction phase is the index indicating the proper construction management. In this study, the vibration method using the least-square estimation has been implemented to monitor changing tensions of two multi-strand cables of a cable-stayed bridge under construction. The test bridge is Hwamyung Bridge in Korea with a prestressed concrete box girder. The field tests are executed during the second tensioning stage just after the installation of the key segment. The tensions of two cables are measured before and after the tensioning and 5 days later (i.e., after finishing the tensioning of all cables). The accuracy of the estimated tensions by the vibration method has been improved by employing proper effective lengths of the cables. The measured tensions are compared with the result of the lift-off tests and design tensions. The vibration method shows very good performance in monitoring the changing tensions according to the construction phase with minimal error.

Development of QC Shell Element For Three Dimensional Construction Stage Analysis of PSC Bridge (PSC 교량의 3차원 시공 중 해석기법을 위한 쉘요소 개발)

  • Byun, Yun-Joo;Kim, Hyun-Ky;Song, Sak;Kim, Young-Hoe;Pornpeerakeat, Sacharuck;Kim, Ki-Du
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.557-562
    • /
    • 2007
  • In order to analyze the PSC box-girder bridge by the cantilever construction method, three dimensional analysis method using the PSC shell clement is suggested. The time dependent material functions are based on the ACI and CEB code. The time dependent concrete material properties considered are changes in strength, elastic modulus, creep and shrinkage. For the prestressing tendon, relaxation effects are considered. Anchorage and friction loses during tendon installations are also included. The ACI and CEB material models for creep and elastic modulus are also included.

  • PDF

Investigation of Sectional Force on Increasing of Dead Load with Bridge Deck Overlay using Electric Arc Furnace Slag Sand (전기로(電氣爐) 산화(酸化)슬래그 잔골재를 이용한 교면포장(橋面鋪裝) 시 단위질량(單位質量) 증대(增大)에 따른 슬래브 단면력(斷面力) 검토(檢討))

  • Jung, Won-Kyong;Chon, Beom Jun;Gil, Yong-Soo
    • Resources Recycling
    • /
    • v.22 no.2
    • /
    • pp.62-70
    • /
    • 2013
  • Electric arc furnace slag is made in ironworks during steel refining, it is been increasing chemical and physical resistibility using ageing method of unstable state of melting steel slag for using concrete's fine aggregates. Which is been changing stable molecular structure of aggregates, it restrains moving of ion and molecule. In Korea, KS F 4571 has been prepared for using the electric arc furnace slag to concrete aggregates. In this study, Electric arc furnace slag is used in the PMC(Polymer Modified Concrete) which is applied a bridge pavement of rehabilitation, largely. In that case, this study evaluates the structural safety about increasing the specific weight. The 4-type bridges(RC slab bridge, RC rigid-frame bridge, PSC Beam bridge, Steel box girder bridge) pavement's increasing the total dead load is in 1 ~ 2%. Design moments in a load combination are increased less then 2%. safety factor is decreased less than 3%. Therefore, the structural safety has no problem for applying the electric arc furnace slag within PMC in bridge.

Effects of soil-structure interaction on construction stage analysis of highway bridges

  • Ates, Sevket;Atmaca, Barbaros;Yildirim, Erdal;Demiroz, Nurcan Asci
    • Computers and Concrete
    • /
    • v.12 no.2
    • /
    • pp.169-186
    • /
    • 2013
  • The aim of this paper is to determine the effect of soil-structure interaction and time dependent material properties on behavior of concrete box-girder highway bridges. Two different finite element analyses, one stage and construction stage, have been carried out on Komurhan Bridge between Elazi$\breve{g}$ and Malatya province of Turkey, over Fırat River. The one stage analysis assume that structure was built in a second and material properties of structure not change under different loads and site conditions during time. However, construction stage analysis considers that construction time and time dependent material properties. The main and side spans of bridge are 135 m and 76 m, respectively. The bridge had been constructed in 3 years between 1983 and 1986 by balanced cantilever construction method. The parameters of soil-structure interaction (SSI), time dependent material properties and construction method are taken into consideration in the construction stage analysis while SSI is single parameter taking into consideration in the one stage analysis. The 3D finite element model of bridge is created the commercial program of SAP2000. Time dependent material properties are elasticity modulus, creep and shrinkage for concrete and relaxation for steel. Soft, medium, and firm soils are selected for evaluating SSI in both analyses. The results of two different finite element analyses are compared with each other. It is seen that both construction stage and SSI have a remarkable effect on the structural behavior of the bridge.

A Study on the Behavior Characteristics of a New-Type FRP-Concrete Composite Deck (신개념 FRP-콘크리트 합성 바닥판의 거동 특성 고찰)

  • Cho Keunhee;Chin Won Jong;Kim Sung Tae;Cho Jeong-Rae;Kim Byung-Suk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.746-749
    • /
    • 2004
  • A new-type of FRP-concrete composite bridge deck system is proposed and its behaviors are experimentally studied. The new-typedeck consists of FRP as a permanent form and main tension resisting member and concrete as a compression resisting member. A suitable bonding method such as silica coating is applied to the interface between FRP and concrete to ensure composite behavior. The proposed deck system uses the box-shape FRP member, while a typical FRP-concrete composite deck uses the I-shape FRP member. Theproposed deck system has inherent advantages of a FRP-concrete composite deck like corrosion free and easy construction. The new-type deck shows the equal performances compared to a previous one, and has the advantage of reducing self-weight. In this study, the static tests on 3-span FRP-concrete decks in full scale are carried out, so that load-displacement relation, stress distribution, failure mode and design criteria are analyzed. The test results show that the deflection design criterion (L/800, L: span length) is satisfied at the service load state. No concrete tensile crack occurs in the negative moment region above the main girder, regardless of no tensile reinforcement at upper concrete portion.

  • PDF

Behavior of Hollow Box Girder Using Unbonded Compressive Pre-stressing (비부착 압축 프리스트레싱을 도입한 중공박스 거더의 거동)

  • Kim, Sung Bae;Kim, Jang-Ho Jay;Kim, Tae Kyun;Eoh, Cheol Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3A
    • /
    • pp.201-209
    • /
    • 2010
  • Generally, PSC girder bridge uses total gross cross section to resist applied loads unlike reinforced concrete member. Also, it is used as short and middle span (less than 30 m) bridges due to advantages such as ease of design and construction, reduction of cost, and convenience of maintenance. But, due to recent increased public interests for environmental friendly and appearance appealing bridges all over the world, the demands for longer span bridges have been continuously increasing. This trend is shown not only in ordinary long span bridge types such as cable supported bridges but also in PSC girder bridges. In order to meet the increasing demands for new type of long span bridges, PSC hollow box girder with H-type steel as compression reinforcements is developed for bridge with a single span of more than 50 m. The developed PSC girder applies compressive prestressing at H-type compression reinforcements using unbonded PS tendon. The purpose of compressive prestressing is to recover plastic displacement of PSC girder after long term service by releasing the prestressing. The static test composed of 4 different stages in 3-point bending test is performed to verify safety of the bridge. First stage loading is applied until tensile cracks form. Then in second stage, the load is removed and the girder is unloaded. In third stage, after removal of loading, recovery of remaining plastic deformation is verified as the compressive prestressing is removed at H-type reinforcements. Then, in fourth stage, loading is continued until the girder fails. The experimental results showed that the first crack occurs at 1,615 kN with a corresponding displacement of 187.0 mm. The introduction of the additional compressive stress in the lower part of the girder from the removal of unbonded compressive prestressing of the H-type steel showed a capacity improvement of about 60% (7.7 mm) recovery of the residual deformation (18.7 mm) that occurred from load increase. By using prestressed H-type steel as compression reinforcements in the upper part of cross section, repair and rehabilitation of PSC girders are relatively easy, and the cost of maintenance is expected to decrease.

Prediction of Prestress Foce Losses by Nonlinear Regression (비선형 회귀분석에 의한 프리스트레스 하중의 사간에 따른 소실 예측)

  • 오병환;양인환;홍경옥;채성태
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.347-352
    • /
    • 1998
  • The purpose of this paper is to present and establish a procedure to predict the prestress forces during the service life of the structure. The statistical approach of this procedure is using the in-situ measurement data of the post-tensioning system to develop a nonlinear regression analysis. The method of least squares is used to fit a certain function a set of data. Use of a nonlinear model is achieved by its logarithmic transformation and sunsequent use of linear-regression theory. The regression analysis result can be used to check the prestress force during the service life so that the remaining prestress force is equal to or exceeds the design requirement. Results from the measurement data of PSC box girder bridge structure were used to demonstrate the procedures.

  • PDF