• 제목/요약/키워드: Concrete Elastic Modulus

검색결과 473건 처리시간 0.024초

Tensile damage of reinforced concrete and simulation of the four-point bending test based on the random cracking theory

  • Chang, Yan-jun;Wan, Li-yun;Mo, De-kai;Hu, Dan;Li, Shuang-bei
    • Computers and Concrete
    • /
    • 제30권4호
    • /
    • pp.289-299
    • /
    • 2022
  • Based on the random cracking theory, the cylinder RVE model of reinforced concrete is established and the damage process is divided into three stages as the evolution of the cracks. The stress distribution along longitude direction of the concrete and the steel bar in the cylinder model are derived. The equivalent elastic modulus of the RVE are derived and the user-defined field variable subroutine (USDFLD) for the equivalent elastic modulus is well integrated into the ABAQUS. Regarding the tensile rebars and the concrete surrounding the rebars as the equivalent homogeneous transversely isotropic material, and the FEM analysis for the reinforced concrete beams is conducted with the USDFLD subroutine. Considering the concrete cracking and interfacial debonding, the macroscopic damage process of the reinforced concrete beam under four-point bending loading in the simulation. The volume fraction of rebar and the cracking degree are mainly discussed to reveal their influence on the macro-performance and they are calibrated with experimental results. Comparing with the bending experiment performed with 8 reinforced concrete beams, the bending stiffness of the second stage and the ultimate load simulated are in good agreement with the experimental values, which verifies the effectiveness and the accuracy of the improved finite element method for reinforced concrete beam.

천이영역을 고려한 콘크리트 탄성계수의 미시역학적 추정 (Micremechanics-based Evaluation of Elastic Modulus of Concrete considering Interfacial Transition Zone)

  • 송하원;조호진;변근주
    • 콘크리트학회지
    • /
    • 제10권2호
    • /
    • pp.99-107
    • /
    • 1998
  • 콘크리트는 일반적으로 수회시멘트풀과 골재로 이루어진 이상의 복합체이지만 미시적으로는 수화시멘트풀과 골재, 그리고 천이영역으로 이루어진 삼상의 복합체이다. 수화시멘트풀과 골재 사이에서 형성되는 천이영역은 국부적으로 공극률이 높으므로 콘크리트의 강성과 강도에 많은 영향을 끼친다. 본 논문에서는 이러한 천이영역의 특성을 고려하여 콘크리트의 탄성계수를 추정하기 위해 이원 삼중 내포물 모델을 제안하였다. 제안된 모델에 의한 탄성계수의 추정결과는 실험결과와 비교하여 잘 일치하였으며 제안된 모델은 실험적으로 구하기 힘든 천이영역의 특성을 구하는데 사용될 수 있다.

라텍스개질 콘크리트의 열팽창 특성 분석 (Analysis of Thermal Expansion of Latex-Modified Concrete)

  • 최성용;이주형;임홍범;윤경구
    • 산업기술연구
    • /
    • 제23권A호
    • /
    • pp.157-163
    • /
    • 2003
  • The properties of mechanics and durability of LMC have been performed actively. However, little studies on analysis and properties of thermal expansion has been on the temperature variation. Especially, the low of bonding strength and tensile cracking are caused by difference of thermal expansion between LMC and the substrate concrete. Therefore, this study focused on effect of thermal expansion behavior and properties of LMC according to temperature variation. To identify the property of thermal expansion of LMC, tests of modulus of thermal expansion were carried out at 28 days after casting specimen, subjected to temperature variation between $10^{\circ}C$ and $60^{\circ}C$. The results of this study showed the modulus of elastic of LMC was similar to that of ordinary portland concrete(OPC). It means that stresses caused by difference of modulus of elastic did not occur on interface between LMC and existing concrete. The modulus of thermal expansion of LMC had a little smaller than that of OPC. The modulus of thermal expansion of polymer modified concrete is generally larger than OPC, but the result of this test is disagree with the fact, which may be due to the humidity evaporation difference and aggregate properties.

  • PDF

Accelerated life testing of concrete based on stochastic approach and assessment

  • Zhu, Binrong;Qiao, Hongxia;Feng, Qiong;Lu, Chenggong
    • Computers and Concrete
    • /
    • 제19권1호
    • /
    • pp.111-120
    • /
    • 2017
  • This study aimed to design the accelerated life testing (ALT) of concrete, which stimulating the special natural environment maximumly. Its evaluation indexes, such as dynamic elastic modulus, mass and ultrasonic velocity were measured, and the variation of relative mass and relative dynamic elastic modulus of concrete were studied. Meanwhile, the microanalysis method was used. Moreover, an exploratory application of the stochastic approach, the Weibull distribution and the lognormal distribution, were made to assess the durability of concrete structures. The results show that the ALT for simulating natural environment is more close to the service process of concrete structure under actual conditions; The relative dynamic elastic modulus can be used as the dominant durability evaluation parameters, because it is more sensitive to the environmental factors compared with the relative quality evaluation parameters; In the course of the concrete deterioration, the destruction of the salt freezing cycle is the dominant factor, supplemented by other factors; Both of those two stochastic approaches can be used to evaluate the reliability of concrete specimens under the condition of ALT; By comparison, The lognormal distribution method is better to describe the reliability process.

Mechanical properties of coconut fiber-reinforced coral concrete

  • Cunpeng Liu;Fatimah De'nan;Qian Mo;Yi Xiao;Yanwen Wang
    • Structural Engineering and Mechanics
    • /
    • 제90권2호
    • /
    • pp.107-116
    • /
    • 2024
  • This study examined the changes in the mechanical properties of coral concrete under different coconut fiber admixtures. To accomplish this goal, the compressive strength, splitting tensile strength, flexural strength and elastic modulus properties of coral concrete blocks reinforced with coconut fibers were measured. The results showed that the addition of coconut fiber had little effect on the cube and axial compressive strengths. With increasing coconut fiber content, the flexural strength and splitting tensile strength of the concrete changed substantially, first by increasing and then by decreasing, with maximum increases of 36.0% and 12.8%, respectively; additionally, the addition of coconut fibers resulted in a failure type with some ductility. When the coconut fiber-reinforced coral concrete was 7 days old, it reached approximately 74% of its maximum strength. The addition of coconut fiber did not affect the early strength of the coral concrete mixed with seawater. When the amount of coconut fiber was no more than 3 kg/m3, the resulting concrete elastic modulus decreased only slightly from that of a similar concrete without coconut fiber, and the maximum decrease was 5.4%. The optimal dose of coconut fiber was 3 kg/m3 in this study.

UP-MMA 폴리머 콘크리트의 경화수축, 열팽창계수 및 탄성계수 (Setting Shrinkage, Coefficient of Thermal Expansion, and Elastic Modulus of UP-MMA Based Polymer Concrete)

  • 연규석;연정흠
    • 콘크리트학회논문집
    • /
    • 제24권4호
    • /
    • pp.491-498
    • /
    • 2012
  • 이 연구는 시멘트 콘크리트 포장의 보수나 프리캐스트 제품용으로 사용되는 UP-MMA 폴리머 콘크리트의 경화수축, 열팽창계수 및 탄성계수에 대한 연구이다. 이를 위해 UP-MMA비, SRA 첨가량, 시험온도 등을 변수로 하여 경화수축 시험과 UP-MMA비에 따른 열팽창과 압축응력-변형률에 대하여 시험을 실시하였다. 그 결과 경화수축은 29.2~$82.6{\times}10^{-4}$으로 UP 비율과 시험온도에 큰 영향을 받는 것으로 나타났다. 그리고 열팽창계수는 21.6~$31.2{\times}10^{-6}/^{\circ}C$, 탄성계수는 2.8~$3.3{\times}10^4MPa$, 극한변형률은 0.00381~0.00418이었으며, 이는 UP-MMA비에 크게 영향을 받는 것으로 나타났다. 이러한 결과들은 UP-MMA 폴리머 콘크리트의 적용을 위한 설계에 중요한 기초자료로 이용될 수 있을 것이다.

Mechanical behavior of recycled fine aggregate concrete after high temperature

  • Liang, Jiong-Feng;Wang, En;He, Chun-Feng;Hu, Peng
    • Structural Engineering and Mechanics
    • /
    • 제65권3호
    • /
    • pp.343-348
    • /
    • 2018
  • This paper reports mechanical behavior of recycled fine aggregate concretes after high temperatures. It is found that compressive strength of recycled fine aggregate concretes decline significantly as the temperature rises. The elastic modulus of recycled fine aggregate concretes decreases with the increase in temperature, and the decrease is much quicker than the decrease in compressive strength. The split tensile strength of recycled fine aggregate concrete decrease as the temperature rises. Through the regression analysis, the relationship of the mechanical behavior with temperature are proposed, including the compressive behavior, elastic modulus and split tensile strength, which are fitting the test data.

Influence of prestressing on the behavior of uncracked concrete beams with a parabolic bonded tendon

  • Bonopera, Marco;Chang, Kuo-Chun;Lin, Tzu-Kang;Tullini, Nerio
    • Structural Engineering and Mechanics
    • /
    • 제77권1호
    • /
    • pp.1-17
    • /
    • 2021
  • The influence of prestress force on the fundamental frequency and static deflection shape of uncracked Prestressed Concrete (PC) beams with a parabolic bonded tendon was examined in this paper. Due to the conflicts among existing theories, the analytical solutions for properly considering the dynamic and static behavior of these members is not straightforward. A series of experiments were conducted for a total period of approximately 2.5 months on a PC beam made with high strength concrete, subsequently and closely to the 28 days of age of concrete. Specifically, the simply supported PC member was short term subjected to free transverse vibration and three-point bending tests during its early-age. Subsequently, the experimental data were compared with a model that describes the dynamic behavior of PC girders as a combination of two substructures interconnected, i.e., a compressed Euler-Bernoulli beam and a tensioned parabolic cable. It was established that the fundamental frequency of uncracked PC beams with a parabolic bonded tendon is sensitive to the variation of the initial elastic modulus of concrete in the early-age curing. Furthermore, the small variation in experimental frequency with time makes doubtful its use in inverse problem identifications. Conversely, the relationship between prestress force and static deflection shape is well described by the magnification factor formula of the "compression-softening" theory by assuming the variation of the chord elastic modulus of concrete with time.

줄눈 콘크리트포장 3차원 유한요소모델의 민간도 분석 (Sensitivity Analysis of 3-Dimensional FE Models for Jointed Concrete Pavements)

  • 유태석;심종성
    • 대한토목학회논문집
    • /
    • 제26권3D호
    • /
    • pp.435-444
    • /
    • 2006
  • 본 논문은 AREA법을 사용하는 줄눈 콘크리트포장의 평가에 3차원 유한요소모델을 사용하는 경우 나타나는 특성을 조사하는데 목적이 있다. 이를 위해 실제 콘크리트포장을 거동을 반영할 수 있는 3차원 유한요소모델을 구축하였고 2차원 모델과 비교한 후 민감도 분석을 수행하였다. ILLISLAB을 사용한 2차원 모델과 비교하였고 하중형태의 영향 보다 하중재하 지점의 자체수축과 기층모델에 따른 영향을 더 많이 받는 것으로 나타났다. 3차원 모델에서 비선형 온도구배를 선형 온도구배로 변화시키는 경우 발생하는 영향을 조사하였고 큰 차이를 보이지는 않았으나 지반 탄성계수가 작아질수록 더 많은 차이를 보였다. 동적하중에 의한 처짐을 구하였고 정적하중에 의한 처짐과 비교한 결과 낮은 지반 탄성계수에서는 동적하중에 의한 처짐이 작게 나타났으나 높은 지반 탄성계수에서는 동적하중에 의한 처짐이 크게 나타났다. 동적하중에 의한 처짐 이력을 구하고 AREA법을 이용하여 동적지지력과 탄성계수를 역산하였으며 이를 정적 처짐에 의한 결과와 비교하였다. 그 결과 동적지지력의 경우 정적 해석에 의한 값보다 동적해석에 의한 값이 낮게 나타났고 탄성계수의 경우 반대의 경향을 나타내어 현장에서 AREA법을 사용하는 경우 나타나는 평가결과의 특성을 설명하는 것으로 판단되었다.

평판재하시험을 이용한 지반의 탄성계수 측정에 관한 연구 (The evaluation of Elastic modulus of the Foundation by the Plate Loading Test)

  • 최장렬;정진환;조현영
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1999년도 가을 학술발표회 논문집
    • /
    • pp.61-68
    • /
    • 1999
  • This paper describes the method of evaluating the elastic modulus of soil medium by using the Circular Plate Loading Test. The elastic foundaton is considered to be the elastic half-space. The stiffness matrix of elastic half space is drived using Boussinesq's analytical soulution. A numerical examples are presented to verify the validity of this procedure. Also, the numerical results are compared with others by the existing study results. The procedure proposed in this theses can be applied to the design of paving concrete resting on the elastic foundation.

  • PDF