• 제목/요약/키워드: Concrete Compressive Strength Prediction

검색결과 370건 처리시간 0.023초

Application of internet of things for structural assessment of concrete structures: Approach via experimental study

  • D. Jegatheeswaran;P. Ashokkumar
    • Smart Structures and Systems
    • /
    • 제31권1호
    • /
    • pp.1-11
    • /
    • 2023
  • Assessment of the compressive strength of concrete plays a major role during formwork removal and in the prestressing process. In concrete, temperature changes occur due to hydration which is an influencing factor that decides the compressive strength of concrete. Many methods are available to find the compressive strength of concrete, but the maturity method has the advantage of prognosticating strength without destruction. The temperature-time factor is found using a LM35 temperature sensor through the IoT technique. An experimental investigation was carried out with 56 concrete cubes, where 35 cubes were for obtaining the compressive strength of concrete using a universal testing machine while 21 concrete cubes monitored concrete's temperature by embedding a temperature sensor in each grade of M25, M30, M35, and M40 concrete. The mathematical prediction model equation was developed based on the temperature-time factor during the early age compressive strength on the 1st, 2nd, 3rd and 7th days in the M25, M30, M35, and M40 grades of concrete with their temperature. The 14th, 21st and 28th day's compressive strength was predicted with the mathematical predicted equation and compared with conventional results which fall within a 2% difference. The compressive strength of concrete at any desired age (day) before reaching 28 days results in the discovery of the prediction coefficient. Comparative analysis of the results found by the predicted mathematical model show that, it was very close to the results of the conventional method.

Concrete compressive strength identification by impact-echo method

  • Hung, Chi-Che;Lin, Wei-Ting;Cheng, An;Pai, Kuang-Chih
    • Computers and Concrete
    • /
    • 제20권1호
    • /
    • pp.49-56
    • /
    • 2017
  • A clear correlation exists between the compressive strength and elastic modulus of concrete. Unfortunately, determining the static elastic modulus requires destructive methods and determining the dynamic elastic modulus is greatly complicated by the shape and size of the specimens. This paper reports on a novel approach to the prediction of compressive strength in concrete cylinders using numerical calculations in conjunction with the impact-echo method. This non-destructive technique involves obtaining the speeds of P-waves and S-waves using correction factors through numerical calculation based on frequencies measured using the impact-echo method. This approach makes it possible to calculate the dynamic elastic modulus with relative ease, thereby enabling the prediction of compressive strength. Experiment results demonstrate the speed, convenience, and efficacy of the proposed method.

80℃ 온수양생을 이용한 초고강도 콘크리트의 조기 강도 예측에 관한 연구 (A Study on the Prediction of Ultra-High Strength Concrete Using 80℃ Warm Water Method)

  • 여상길;하정수;명로언;김학영;공민호;정상진
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2012년도 추계 학술논문 발표대회
    • /
    • pp.93-94
    • /
    • 2012
  • In this study, prediction of later-age compressive strength of ultra-high strength concrete, based on the accelerated strength of concrete cured in 80℃ warm water was investigated. As a result, the nature of ultra-high strength concrete showed a rapid early strength enhancement, compressive strength using warm water method of 80℃ at 2days is same compressive at 28days using standard curing.

  • PDF

적산온도에 의한 고유동콘크리트의 압축강도 예측 (Prediction of the Compressive Strength of High Flowing Concrete by Maturity)

  • 길배수;한장현;김규용;권영진;남재현;김무한
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 가을 학술발표논문집(II)
    • /
    • pp.281-286
    • /
    • 1998
  • The aim of this study is to compare the development of compressive strength of high-Flowing concrete with maturity and to investigate the applicability of strength prediction models of concrete. An experiment was attempted on the high-flowing concrete mixes using Ordinary portland cement, High belite cement, Blast furance slage cement and replaced Fly-ash of 30% by weight of Ordinary portland cement, the water-binder ratios of mixes being 0.35 and the curing temperatures being 30, 20, 10, 5$^{\circ}C$. Test results of mixes are statistically analyzed to infer the correlation coefficient between the maturity and the compressive strength of high-flowing concrete.

  • PDF

고로슬래그미분말 혼입 콘크리트의 적산온도를 이용한 강도예측모델에 관한 실험적 연구 (An Experimental Study on the Prediction Model for the Compressive Strength of Concrete with Blast Furnace Slag by Maturity Method)

  • 양현민;조명원;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2012년도 추계 학술논문 발표대회
    • /
    • pp.107-108
    • /
    • 2012
  • The study on the strength prediction using Maturity is mainly focused on, but the study on the concrete mixing blast furnace slag powder is insufficient. The purpose of this study is to investigate the relationships between compressive strength and equivalent age by Maturity function and is to compare and examine the strength prediction of concrete mixing Blast Furnace Slag Power using ACI and Logistic Curve prediction equation. So it is intended that fundamental data are presented for quality management and process management of concrete mixing Blast Furnace Slag Power in the construction field.

  • PDF

적산온도에 의한 고로슬래그 미분말 혼입 콘크리트의 초기재령 압축강도의 예측 모델식 적용성 평가 (Evaluation on the Prediction Model for the Compressive Strength of Concrete mixing Blast Furnace Slag Powder at early-aged by Maturity Method)

  • 양현민;박원준;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2012년도 춘계 학술논문 발표대회
    • /
    • pp.251-252
    • /
    • 2012
  • The exiting studies on the strength prediction by maturity method is mainly focused on concrete using OPC, meanwhile the study on the concrete mixing blast furnace slag powder (BFSP) is insufficient. The purpose of this study is to investigate the relationships between compressive strength and equivalent age by existing Maturity functions, i.e., Nurse-saul function Arrhenius function. This study also compared and examined the strength prediction of concrete mixing BGSP using ACI model and Logistic Curve prediction equation. Therefore, it is intended that fundamental data are presented for quality management and process management of concrete mixing BFSP.

  • PDF

Neuro-fuzzy based approach for estimation of concrete compressive strength

  • Xue, Xinhua;Zhou, Hongwei
    • Computers and Concrete
    • /
    • 제21권6호
    • /
    • pp.697-703
    • /
    • 2018
  • Compressive strength is one of the most important engineering properties of concrete, and testing of the compressive strength of concrete specimens is often costly and time consuming. In order to provide the time for concrete form removal, re-shoring to slab, project scheduling and quality control, it is necessary to predict the concrete strength based upon the early strength data. However, concrete compressive strength is affected by many factors, such as quality of raw materials, water cement ratio, ratio of fine aggregate to coarse aggregate, age of concrete, compaction of concrete, temperature, relative humidity and curing of concrete. The concrete compressive strength is a quite nonlinear function that changes depend on the materials used in the concrete and the time. This paper presents an adaptive neuro-fuzzy inference system (ANFIS) for the prediction of concrete compressive strength. The training of fuzzy system was performed by a hybrid method of gradient descent method and least squares algorithm, and the subtractive clustering algorithm (SCA) was utilized for optimizing the number of fuzzy rules. Experimental data on concrete compressive strength in the literature were used to validate and evaluate the performance of the proposed ANFIS model. Further, predictions from three models (the back propagation neural network model, the statistics model, and the ANFIS model) were compared with the experimental data. The results show that the proposed ANFIS model is a feasible, efficient, and accurate tool for predicting the concrete compressive strength.

배합조건이 다른 콘크리트의 물 시멘트비와 압축강도를 고려한 염화물 확산계수 예측모델식 구성 (Construction of Prediction Model Formula of Chloride Diffusion Coefficient Considering Water-Cement Ratio and Compressive Strength of Different Mix Conditions)

  • 이택우;박승범;윤의식
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(II)
    • /
    • pp.185-188
    • /
    • 2005
  • This study selected three different specified concrete strength types of mixture which were applied to domestic seawater concrete structure and measured compressive strength and chloride diffusion coefficient and composed the formula of prediction model of chloride diffusion coefficient in order to provide the useful data for concrete mix decision of seawater structures. As a result, the formula of prediction model of chloride diffusion coefficient which set W/C and compressive strength as parameters and performed multiplex regression analysis which was based on the mathematical theory was confirmed more reliable than the formula of prediction which was composed existing water-cement ratio function.

  • PDF

Comparative analysis of multiple mathematical models for prediction of consistency and compressive strength of ultra-high performance concrete

  • Alireza Habibi;Meysam Mollazadeh;Aryan Bazrafkan;Naida Ademovic
    • Coupled systems mechanics
    • /
    • 제12권6호
    • /
    • pp.539-555
    • /
    • 2023
  • Although some prediction models have successfully developed for ultra-high performance concrete (UHPC), they do not provide insights and explicit relations between all constituents and its consistency, and compressive strength. In the present study, based on the experimental results, several mathematical models have been evaluated to predict the consistency and the 28-day compressive strength of UHPC. The models used were Linear, Logarithmic, Inverse, Power, Compound, Quadratic, Cubic, Mixed, Sinusoidal and Cosine equations. The applicability and accuracy of these models were investigated using experimental data, which were collected from literature. The comparisons between the models and the experimental results confirm that the majority of models give acceptable prediction with a high accuracy and trivial error rates, except Linear, Mixed, Sinusoidal and Cosine equations. The assessment of the models using numerical methods revealed that the Quadratic and Inverse equations based models provide the highest predictability of the compressive strength at 28 days and consistency, respectively. Hence, they can be used as a reliable tool in mixture design of the UHPC.

Prediction of compressive strength of concrete based on accelerated strength

  • Shelke, N.L.;Gadve, Sangeeta
    • Structural Engineering and Mechanics
    • /
    • 제58권6호
    • /
    • pp.989-999
    • /
    • 2016
  • Moist curing of concrete is a time consuming procedure. It takes minimum 28 days of curing to obtain the characteristic strength of concrete. However, under certain situations such as shortage of time, weather conditions, on the spot changes in project and speedy construction, waiting for entire curing period becomes unaffordable. This situation demands early strength of concrete which can be met using accelerated curing methods. It becomes necessary to obtain early strength of concrete rather than waiting for entire period of curing which proves to be uneconomical. In India, accelerated curing methods are used to arrive upon the actual strength by resorting to the equations suggested by Bureau of Indian Standards' (BIS). However, it has been observed that the results obtained using above equations are exaggerated. In the present experimental investigations, the results of the accelerated compressive strength of the concrete are used to develop the regression models for predicting the short term and long term compressive strength of concrete. The proposed regression models show better agreement with the actual compressive strength than the existing model suggested by BIS specification.