• Title/Summary/Keyword: Concrete Compressive Strength Prediction

Search Result 370, Processing Time 0.022 seconds

Compressive strength prediction of limestone filler concrete using artificial neural networks

  • Ayat, Hocine;Kellouche, Yasmina;Ghrici, Mohamed;Boukhatem, Bakhta
    • Advances in Computational Design
    • /
    • v.3 no.3
    • /
    • pp.289-302
    • /
    • 2018
  • The use of optimum content of supplementary cementing materials (SCMs) such as limestone filler (LF) to blend with Portland cement has been resulted in many environmental and technical advantages, such as increase in physical properties, enhancement of sustainability in concrete industry and reducing $CO_2$ emission are well known. Artificial neural networks (ANNs) have been already applied in civil engineering to solve a wide variety of problems such as the prediction of concrete compressive strength. The feed forward back propagation (FFBP) algorithm and Tan-sigmoid transfer function were used for the ANNs training in this study. The training, testing and validation of data during the backpropagation training process yielded good correlations exceeding 97%. A parametric study was conducted to study the sensitivity of the developed model to certain essential parameters affecting the compressive strength of concrete. The effects and benefits of limestone filler on hardened properties of the concrete such as compressive strength were well established endorsing previous results in the literature. The results of this study revealed that the proposed ANNs model showed a high performance as a feasible and highly efficient tool for simulating the LF concrete compressive strength prediction.

Prediction of Compressive Strength of Concrete using Probabilistic Neural Networks (확률 신경망이론을 사용한 콘크리트 압축강도 추정)

  • 김두기;이종재;장성규;임병용
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.311-316
    • /
    • 2003
  • The compressive strength of concrete is a criterion to produce concrete. However, the tests on the compressive strength are complicated and time-consuming. More importantly, it is too late to make improvement even if the test result does not satisfy the required strength, since the test is usually performed at the 28th day after the placement of Concrete at the Construction site. Therefore, strength prediction before the placement of concrete is highly desirable. This study presents the probabilistic technique for predicting the compressive strength of concrete on the basis of concrete mix proportions. The estimation of the strength is based on the probabilistic neural network, and show that the present methods are very efficient and reasonable in predicting the compressive strength of concrete probabilistically.

  • PDF

A neural-based predictive model of the compressive strength of waste LCD glass concrete

  • Kao, Chih-Han;Wang, Chien-Chih;Wang, Her-Yung
    • Computers and Concrete
    • /
    • v.19 no.5
    • /
    • pp.457-465
    • /
    • 2017
  • The Taiwanese liquid crystal display (LCD) industry has traditionally produced a huge amount of waste glass that is placed in landfills. Waste glass recycling can reduce the material costs of concrete and promote sustainable environmental protection activities. Concrete is always utilized as structural material; thus, the concrete compressive strength with a variety of mixtures must be studied using predictive models to achieve more precise results. To create an efficient waste LCD glass concrete (WLGC) design proportion, the related studies utilized a multivariable regression analysis to develop a compressive strength waste LCD glass concrete equation. The mix design proportion for waste LCD glass and the compressive strength relationship is complex and nonlinear. This results in a prediction weakness for the multivariable regression model during the initial growing phase of the compressive strength of waste LCD glass concrete. Thus, the R ratio for the predictive multivariable regression model is 0.96. Neural networks (NN) have a superior ability to handle nonlinear relationships between multiple variables by incorporating supervised learning. This study developed a multivariable prediction model for the determination of waste LCD glass concrete compressive strength by analyzing a series of laboratory test results and utilizing a neural network algorithm that was obtained in a related prior study. The current study also trained the prediction model for the compressive strength of waste LCD glass by calculating the effects of several types of factor combinations, such as the different number of input variables and the relevant filter for input variables. These types of factor combinations have been adjusted to enhance the predictive ability based on the training mechanism of the NN and the characteristics of waste LCD glass concrete. The selection priority of the input variable strategy is that evaluating relevance is better than adding dimensions for the NN prediction of the compressive strength of WLGC. The prediction ability of the model is examined using test results from the same data pool. The R ratio was determined to be approximately 0.996. Using the appropriate input variables from neural networks, the model validation results indicated that the model prediction attains greater accuracy than the multivariable regression model during the initial growing phase of compressive strength. Therefore, the neural-based predictive model for compressive strength promotes the application of waste LCD glass concrete.

Prediction of Compressive Strength of Fly Ash Concrete by a New Apparent Activation Energy Function (새로운 겉보기 활성에너지 함수에 의한 플라이애시 콘크리트의 압축강도 예측)

  • 한상훈;김진근;박연동
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.947-952
    • /
    • 2001
  • The prediction model is proposed to estimate the variation of compressive strength of fly ash concrete with aging. After analyzing the experimental result with the model, the regression results are presented according to fly ash replacement content and water/cement ratio. Based on the regression results, the influence of fly ash replacement content and water/cement ratio on apparent activation energy was investigated. According to the analysis, the model provides a good estimate of compressive strength development of fly ash concrete with aging. As the fly ash replacement content increases, the limiting relative compressive strength and initial apparent activation energy become greater. The concrete with water/cement ratio smaller than 0.40 shows that the limiting relative compressive strength and apparent activation energy are nearly constant according to water/cement ratio. But, the concrete with water/cement ratio greater than 0.40 has the increasing limiting relative compressive strength and apparent activation energy with increasing water/cement ratio.

  • PDF

Prediction of compressive strength of concrete using neural networks

  • Al-Salloum, Yousef A.;Shah, Abid A.;Abbas, H.;Alsayed, Saleh H.;Almusallam, Tarek H.;Al-Haddad, M.S.
    • Computers and Concrete
    • /
    • v.10 no.2
    • /
    • pp.197-217
    • /
    • 2012
  • This research deals with the prediction of compressive strength of normal and high strength concrete using neural networks. The compressive strength was modeled as a function of eight variables: quantities of cement, fine aggregate, coarse aggregate, micro-silica, water and super-plasticizer, maximum size of coarse aggregate, fineness modulus of fine aggregate. Two networks, one using raw variables and another using grouped dimensionless variables were constructed, trained and tested using available experimental data, covering a large range of concrete compressive strengths. The neural network models were compared with regression models. The neural networks based model gave high prediction accuracy and the results demonstrated that the use of neural networks in assessing compressive strength of concrete is both practical and beneficial. The performance of model using the grouped dimensionless variables is better than the prediction using raw variables.

Generalization and its Verification of Concrete Compressive Strength Prediction Equation (콘크리트 압축강도 예측식의 일반화 및 이들 식의 검증)

  • Choi, Joong-Cheol;Yi, Seong-Tae;Yang, Eun-Ik;Kim, Dong-Yong;Son, Suk-Ho;Mun, Byung-Suk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.537-540
    • /
    • 2006
  • In previous study, the effect of specimen sizes and shapes on the compressive strength of concrete specimens was experimentally investigated based on fracture mechanics. In this study, the relationship between the cube compressive strength and the cylinder strength for representative specimen sizes was investigated by linear regression analyses. And, by reanalyzing the compressive strength prediction equations with specimen size and shape obtained in previous studies, the compressive strength prediction equations were generalized. In addition, its verification was investigated by comparing with the results obtained from other researchers.

  • PDF

Effect of Curing Temperature and Aging on the Mechanical Properties of Concrete (II) -Evaluation of Prediction Models- (콘크리트의 재료역학적 성질에 대한 양생온도와 재령의 효과(II) -예측 모델식을 중심으로-)

  • 한상훈;김진근;양은익
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.6
    • /
    • pp.35-42
    • /
    • 2000
  • In paper I, the relationships between compressive strength and splitting tensile strength or modulus of elasticity were proposed. In this paper, new prediction model is investigated from estimating splitting tensile strength and modulus of elasticity with curing temperature and aging without compressive strength. New prediction model is based on the model which was proposed to predict compressive strength, and splitting tensile strength and modulus of elasticity calculated by this model are compared with experimental values of paper I. To evaluate in-situ applicability of the model, strength and modulus of elasticity tested with variable temperatures are estimated by the prediction model. The prediction model reasonably estimates the strength and the modulus of elasticity of type I and V cement concretes tested in paper I and experimental results with variable temperature tested in this paper.

An Experimental Study on the Prediction of Concrete Compressive Strength by the Maturity Method Using Embedded Wireless Temperature and Humidity Sensor (콘크리트 매립형 무선 온습도 센서 기반 적산온도법을 이용한 콘크리트 압축강도 예측에 관한 실험적 연구)

  • Mun, Dong-Hwan;Jang, Hyun-O;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.94-95
    • /
    • 2018
  • Prediction of compressive strength of concrete by Maturity Method is applied in construction site. However, due to the use of wired type high-priced equipment, economic efficiency and workability are falling. In this study, a newly developed concrete embedded wireless sensor is used to perform a mock-up test. Next, the concrete compressive strength of the Maturity Method is predicted using Saul and Plowman's function as measured temperature data. The predicted concrete strength at the beginning of the age was the actual strength and stiffness, but the error rate was less than 1% at 28th day.

  • PDF

Prediction of Mechanical Properties of Concrete by a New Apparent Activation Energy Function (새로운 겉보기 활성에너지 함수에 의한 콘크리트의 재료역학적 성질의 예측)

  • 한상훈;김진근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.173-178
    • /
    • 2000
  • New prediction model is investigated estimating splitting tensile strength and modulus of elasticity with curing temperature and aging. New prediction model is based on the model which was proposed to predict compressive strength, and splitting tensile strength and modulus of elasticity calculated by this model are compared with experimental values. New prediction model well estimated splittinge tensile strength and elastic modulus as well as compressive strength.

  • PDF

Support vector machine for prediction of the compressive strength of no-slump concrete

  • Sobhani, J.;Khanzadi, M.;Movahedian, A.H.
    • Computers and Concrete
    • /
    • v.11 no.4
    • /
    • pp.337-350
    • /
    • 2013
  • The sensitivity of compressive strength of no-slump concrete to its ingredient materials and proportions, necessitate the use of robust models to guarantee both estimation and generalization features. It was known that the problem of compressive strength prediction owes high degree of complexity and uncertainty due to the variable nature of materials, workmanship quality, etc. Moreover, using the chemical and mineral additives, superimposes the problem's complexity. Traditionally this property of concrete is predicted by conventional linear or nonlinear regression models. In general, these models comprise lower accuracy and in most cases they fail to meet the extrapolation accuracy and generalization requirements. Recently, artificial intelligence-based robust systems have been successfully implemented in this area. In this regard, this paper aims to investigate the use of optimized support vector machine (SVM) to predict the compressive strength of no-slump concrete and compare with optimized neural network (ANN). The results showed that after optimization process, both models are applicable for prediction purposes with similar high-qualities of estimation and generalization norms; however, it was indicated that optimization and modeling with SVM is very rapid than ANN models.