• Title/Summary/Keyword: Conceptual structural design and analysis

Search Result 124, Processing Time 0.029 seconds

Conceptual Design and Wind Load Analysis of Tall Building

  • Lee, S.L.;Swaddiwudhipong, S.
    • Computational Structural Engineering : An International Journal
    • /
    • v.1 no.1
    • /
    • pp.11-20
    • /
    • 2001
  • The paper describes the conceptual design, structural modelling and wind load analysis of tall buildings. The lateral stiffness of the building can be obtained economically through the interaction of core walls with peripheral frame tube and/or bundle of frame tubes and integrated design of the basement. The main structural components should be properly distributed such that the building will deflect mainly in the direction of the applied force without inducing significant response in other directions and twist. The cost effectiveness can be further enhanced through close consultation between architects and engineers at an early stage of conceptual design. Simplified structural modelling of the building and its response in three principal directions due to wind load are included. Effects of the two main structural components on the performances of a 70-story reinforced concrete building in terms of peak drift and maximum acceleration under wind load are discussed.

  • PDF

Application Analysis of Artificial Intelligence Technology in Museum Concept Design

  • Chen Xi;Jeanhun Chung
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.321-327
    • /
    • 2023
  • The current rapid development of artificial intelligence technology has involved all aspects of the production field. The development of various algorithms and programs has pushed artificial intelligence to a new peak. Due to its complexity and diversity in the field of architectural design, the positive impact of artificial intelligence technology on architectural design is discussed from the perspective of conceptual design. For museums, which are one of the increasingly popular public facilities, the introduction of artificial intelligence technology has provided certain help in assisting the conceptual design of the museum. This article analyzes the theoretical and practical support of artificial intelligence technology in improving conceptual design, analyzing the architectural appearance, structural layout, materials, etc., to increase the feasibility and practicality of assisting conceptual design. It has certain reference significance for building a modern, advanced, international and interactive modern museum.

Development of Integrated Design System for Structural Design of Machine Tools (공작기계 구조물 설계를 위한 통합설계 시스템 개발)

  • 박면웅;손영태;조성원
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.1
    • /
    • pp.229-239
    • /
    • 2003
  • The design process of machine tools is regarded as a sequential, discrete, and inefficient works as it requires various kinds of design tools and many working hours. This paper describes an integrated design system embedding a design methodology that can support efficiently and systematically the conceptual structural design of machine tools. The system is a knowledge-based design system and has four machine-tool-specific functional modules including configuration design, configuration analysis, structure design, and structural analysis support module. Through the configuration design and analysis module, a machine configuration appropriate for design requirements is selected, and then the arrangement of ribs fer each structural part is decided in the structure design module. Also, the structural analysis support module is used to evaluate design result by utilizing structural analysis software, ANSYS. The system is applied to design of a tapping machine, and shows that the machine structure can be designed fast and conveniently by processing each design step interactively.

A Design Methodology of Relational Database Schema Without the Conceptual Design Step (개념적 설계를 배제한 관계형 데이터베이스 스키마의 설계)

  • Um Yoon-Sup
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.2
    • /
    • pp.445-453
    • /
    • 2005
  • The design process of a relational database system consists of requirement analysis, conceptual design using ER diagram, logical design, and physical design. In logical design process, the conceptual schema is transformed to relational schema, and relational schema is normalized. This traditional design process is hard to applied in real database design process, since there is an ambiguity in conceptual design process. In this paper, we suggest a new design process, which provides more structural design steps by removing the conceptual design process. In new approach, we produce the data flow diagram by the structural methodology. From the attributes in the data store of data flow diagram, we construct relational table schema, and we normalize relational schema. Finally we produced table relationship diagram in order to figure out relationships between tables.

A Study on Conceptual Structural Design for the Composite Wing of A Small Scale WIG Flight Vehicle (소형 WIG선의 복합재 주날개 구조 개념 설계에 관한 연구)

  • Kong, Chang-Duk;Park, Hyun-Bum;Kim, Ju-Il;Kang, Kuk-Jin;Park, Mi-Young
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.179-184
    • /
    • 2005
  • In the present study, conceptual design of the main wing for 20 seats WIG{wing in Ground Effect) flight vehicle, which will be a high speed maritime transportation system for the next generation, was performed. The high stiffness and strength Carbon-Epoxy material was used for the major structure and the skin-spar with a foam sandwich structural type was adopted for improvement of lightness and structural stability. As a design procedure for this study, firstly the design load was estimated with maximum flight load, and then flanges of the front and the rear spar from major bending load and the skin structure and the webs of the spars were preliminarily sized using the netting rules and the rule of mixture. In order to investigate the structural safety and stability, stress analysis was performed by Finite Element Codes such as NASTRAN/PA TRAN[6] and NISA II [7]. From the stress analysis results, it was confirmed that the upper skin structure between the front spar and rear spar was very unstable for the buckling. Therefore in order to solve this problem, a middle spar and the foam sandwich structure at the upper skin and the web were added. After design modification, even thought the designed wing weight was a little bit heavier than the target wing weight, the structural safety and stability of the final design feature was confirmed. Moreover, in order to fix the wing structure at the fuselage, the insert bolt type structure with six high strength bolts was adopted for easy assembly and removal.

  • PDF

Study on Optimum Design of Steel Plane Frame By Using Gradient Projection Method (Gradient Projection법을 이용한 철골평면구조물의 최적설계연구)

  • LEE HAN-SEON;HONG SUNG-MOK
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.04a
    • /
    • pp.38-45
    • /
    • 1994
  • The general conceptual constitution of structural optimization is formulated. The algorithm using the gradient projection method and design sensitivity analysis is discussed. Examples of minimum-weight design for six-story steel plane frame are taken to illustrate the application of this algorithm. The advantages of this algorithm such as marginal cost and design sensitivity analysis as well as system analysis are explained.

  • PDF

Aesthetic Bridge Design using Creative Thinking (창의적 사고력을 이용한 미학적 교량 설계)

  • Kim, Nam-Hee;Koh, Hyun-Moo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3A
    • /
    • pp.217-225
    • /
    • 2009
  • Bridge design is a problem-solving process whose level of design quality strongly depends on how to relate design constraints with feasibile design objectives in conceptual design stage. This paper has focused on how to create bridge shapes using creativity toward better looking bridge appearances in conceptual design stage. The term creativity in this study does not refer to the creation of something from nothing but to the reorganization of existing concepts. Such creativity includes not only enlarging the number of structural forms which is established based on the relationship between form and statics but also combining bridge design with artistic components like an architectural style. Also, this study has investigated the usefulness of graphic statics as a structural analysis tool showing the analysis results visually to generate bridge forms in conceptual design stage. It is expected that the proposed way of generating bridge forms in this study to be used not only for practical purpose but also for educational purpose regarding the aesthetic bridge design serving as a new education paradigm.

Conceptual design of buildings subjected to wind load by using topology optimization

  • Tang, Jiwu;Xie, Yi Min;Felicetti, Peter
    • Wind and Structures
    • /
    • v.18 no.1
    • /
    • pp.21-35
    • /
    • 2014
  • The latest developments in topology optimization are integrated with Computational Fluid Dynamics (CFD) for the conceptual design of building structures. The wind load on a building is simulated using CFD, and the structural response of the building is obtained from finite element analysis under the wind load obtained. Multiple wind directions are simulated within a single fluid domain by simply expanding the simulation domain. The bi-directional evolutionary structural optimization (BESO) algorithm with a scheme of material interpolation is extended for an automatic building topology optimization considering multiple wind loading cases. The proposed approach is demonstrated by a series of examples of optimum topology design of perimeter bracing systems of high-rise building structures.

Topology Optimization Application for Initial Platform Design of 10 MW Grade Floating Type Wave-wind Hybrid Power Generation System (10MW급 부유식 파력-풍력 복합발전 시스템 플랫폼 초기설계를 위한 위상최적화 응용)

  • Song, Chang Yong;Lee, Kangsu;Hong, Keyyong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.3
    • /
    • pp.194-202
    • /
    • 2016
  • This study aims to review a topology optimization based on finite element analysis (FEA) for conceptual design of platform in the 10MW class floating type wave-wind hybrid power generation system (WHPGS). Two topology optimization theories, density method (DM) and homogenization design method (HDM) were used to check which one is more effective for a simplified structural design problem prior to the topology optimization of platform of WHPGS. From the results of the simplified design problem, the HDM was applied to the topology optimization of platform of WHPGS. For the conceptual platform design of WHPGS, FEA model was created and then the structural analysis was performed considering offshore environmental loads at installation site. Hydrodynamics analysis was carried out to calculate pressure on platform and tension forces in mooring lines induced from the offshore environmental loads such as design wave and current. Loading conditions for the structural analysis included the analysis results from the hydrodynamic analysis and the weights of WHPGS. Boundary condition was realized using inertia relief method. The topology optimization of WHPGS platform was performed using the HDM, and then the conceptual arrangement of main structural members was suggested. From the results, it was confirmed that the topology optimization might be a useful tool to design the conceptual arrangement of main structural members for a newly developed offshore structure such as the floating type WHPGS.

A Study on Conceptual Structural Design of Wing for a Small Scale WIG Craft Using Carbon/Epoxy and Foam Sandwich Composite Structure

  • Kong, Chang-Duk;Park, Hyun-Bum;Kang, Kuk-Gin
    • Advanced Composite Materials
    • /
    • v.17 no.4
    • /
    • pp.343-358
    • /
    • 2008
  • This present study provides the structural design and analysis of main wing, horizontal tail and control surface of a small scale WIG (Wing-in-Ground Effect) craft which has been developed as a future high speed maritime transportation system of Korea. Weight saving as well as structural stability could be achieved by using the skin.spar.foam sandwich and carbon/epoxy composite material. Through sequential design modifications and numerical structural analysis using commercial FEM code PATRAN/NASTRAN, the final design structural features to meet the final design goal such as the system target weight, structural safety and stability were obtained. In addition, joint structures such as insert bolts for joining the wing with the fuselage and lugs for joining the control surface to the wing were designed by considering easy assembling as well as more than 20 years service life.