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ABSTRACT
The general conceptual constitution of structural optimization is formulated. The
algorithm using the gradient projection method and design sensitivity analysis is
discussed. Examples of minimum-weight design for six-story steel plane frame are taken
to illustrate the application of this algorithm. The advantages of this algorithm such
as marginal cost and design sensitivity analysis as well as system analysis are
explained,

1. INTRODUCT1ON

The economics regarding the structural design may not be parameterized by a single
variable. Some of the most important factors seem to be the structural volume or weight,
construction labor cost, maintenance and repair expenses throughout the life of the
building, etc. However these factors have different effect on the total cost of

construction and maintenance of building structures from region to region and from time
to time. For example, in some country, the labor cost is much more important than in
other countries where the material cost is generally the higher one, therefore, if
designers are concerned with the real cost of construction and maintenance of building
structures, it is very difficult to visualize or qunatify these economic parameters in a
simple way.

Nevertheless, it is commonly accepted by structural designers that minimization of
structural weight or structural material volume is of the utmost importance in economic
parameters because the weight or volume of structure appears to be roughly proportional
to the material and construction labor cost regardless of time and place of
construction.

Therefore, in this structural optimization program, the objective of design is
assuped to be only the minimization of weight or volume of structure while all the
othersare included in the design constraints,

2.FORMULATION OF MATHMATICAL MODEL[1]
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2.1 Design Variable and State Variable

The behavior of most engineering system is governed by some law of physics. this
behavior is described analytically by a set of variables called state variables. For
structural systems, state variables may include displacements and stresses at certain
points, eigenvectors, eigenvalues etc. Let 2ER’ be a state variable vector representing
displacements at key points of structure, and let yER and [ represent an eigenvector
and eigenvalue, respectively,

There is second set of variables called design variables that describes the system.
Let bER represent a vector of design variables which mean the moment of inertia in
the case of moment-resisting steel structures,

2.2 Relationship Between Design Variable and Associated Section Properties

The member sections are classified as three types, economy beam section, W14
series column section and W12 series column section. The different equations
corresponding to differnt types of sections have been set up by least square curve
fitting. The range of interest in the design variable, the moment inertia, I is assumed
100 to 4000 in*, which corresponds to the member sizes of medium-rise structures, [2]
The equations representing the fitted curves are follows:
Economy beam series:

(‘g) = 8:%Ia$} (2.1a)
¥14 column series:

{é] N (%% (2.1b)
¥12 column series:

(4) - {S5rem) (2.10

Where A and S mean section area and elastic section modulus, respectively.
The shape factor between plastic section modulus, Z and elastic section modulus,
S,is assumed to be 1.15 .

2.3 General Mathematical Model
Now a general mathematical model for optimum design of structural system is
determined as follows:
Definition 1
Find a design variable vector bER that minimizes objective function

¥o(b,z, 1) (2.2)

and satisfies the equillibrium equations and design constraints which can be
expressed in a simplified form as shown in eq(2.3)

wi(b,2,0)< 0,i=1,2,...,m. (2.3)

Definition 2(Constraint set)
A set of points that satisfies all the constraints of problem of Definition 1, is
called a constraint set, It is defined as
D = {b&Rk(b)z=f,K(b)y=tM(b)y,%:(b,2, {)< 0, i=1,2,...,m} (2.4)
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Since all the constraints equations are continuous with respect to b, the set D of
eq(2.4) is closed. It is assumed that D is bounded and hence compact. It is further
assumed that the objective function of (2.2) is continuous on D, Therefore, the
mathematical model for optimum structural design of Definition 1 has an absolute minimum
in D,

2.4 Design Sensitivity Analysis

A major step in any direct method of nonlinear programming is to calculate
gradients of the objective and constraint function with respect to design variables at
the current design point.

A first variation of the function ¥i(b,z,{) gives

dy;
az

3
S\W = awa

dy;
b+ 2+ a"é 3L (2.5)

where all the derivatives are calculated at the given values of b and the computed
values for z and {. The object of design sensitivity analysis is to express the terms
with 8z and 8{ as functions of 5b:Thus the first variation of eq(2.5) is written as

sw: = (1)%b i=0,1,,....m (2.6)

where 1' is then gradient for the function w: with respect to design variables at
current design point, :

In order to eliminate 8z from eq(2.5), one writes a first variation of the state
equation and obtains 8z as

52 = K~ [K(b)z-f 15b (2.7

Also to eliminate 5 from eq(2.5), one writes a first variation of the eigenvalue
problem and after some algebraic manipulation obtains a well-established formula for 3(:

s = 17%b (2.8)

where I° is the design dervative vector for the eigenvalue { given in eq(2.9) with
yM(b)y=1,
= 215K Yy - M)y VT (2.9)

Substituting for 5z and 8{ from eqs(2.7) and (2.9) into eq(2.5) and comparing the
result with eq(2.6), one obtains

i_ AT ay; 3 _ QWi T T
= I3 - 55 K'—55 Kbz -f)»—57-17] (2.10)

Calculation of K* in eq(2.10) can be avoided by an algebraic manipulation. Define a
vector qi as follows,

(g'1” = —%li_il(l i=0,1,2...m (2.11)

Then, the gradient vector 1' in eq(2.10) becomes



= U™ (Kb Yo+ P -5 ] (2.12)

Now postmultiplying eq(2.11) by K and taking the transpose of the resulting equation,
one obtains q' as a solution of the equation

Kq' = [-3%)7 (2.13)

Eq(2.13) is called an adjoint equation, and q' is called an adjoint vector. Note that
the adjoint equation (2.13) has the same cofficient matrix as the original state
equation.

Thus the previous decomposition of K can be used to solve for q'.

2.5 Determination of Search Direction.

With the assumption of initial design point b° being within constraint set, the
reduced optimum design problem for &b is now defined as follows:

Find 8b that minimizes a first order change in the objective function

8w = 1sh (2.14)
and satisfies the linearized design constraints
¥ + 89; SO i=12..,p (2.15)
and a step size constraint
sbWsh < € (2.16)

Here W is a positive definite weighting matrix(usually diagonal) and :is:assumed to
be identify matrix I.£0 is a small number, a tilde () over a function inidicates an e
-active constraint{ that is y;+¢2>0,where )0 is small number,), and p is the number of
e-active constraits, This € is introduced in checking various constraints soithat if the
current design point is arbitraily close to a -constraint surface, then thatcconstraint
is treated as an active constraint.

After Using Kuhn-Tucker necessary condition and doing some rmathematical
manipulations, the design change is expressed as

8b = —(—211-(—)&;1 + b2 (2.17)
sb' = WHP+Lu'l, 8% = -W'Li?

Mpt = -LTWU0 M = &

M= L["WiL L=I10,

The step size —21?in eq(2.17)is always 20. And it is reasonable to select the step
size - directly.
2y

Let the convergence parameter £, be defined as follows:

sbt
¢, = 13b” 1l 2



It can be easily shown that for all optimua design problem, £, lies between 0 and 1.
If &p =0, the relative optimum point is attained.

3. SENSITIVITY ANALYSIS AND SHADOW VALUE OF DESIGN CONSTRAINT

The geometry, load conditions and design variables are shown in Figure 1 and the
imposed constraints are as follows:

(1) Moment: fs £ 0.66F, (compact section)

(2) Deflection: Interstory drift index <0.0025

(3) Soft story failure load factor Ass 2 1l.1Ape

At every step of the optimization procedure, the program calculates the amount of
violations for all the imposed design constraints. The optimization algorithm needs the
design sensitivity analysis of each active constraint to implement the gradient
projection method. Sometimes it is desirable to have a quantitative intuition about how
much influence on a certain active constraint the increase of each design variable by
one unit can have. This can be done by calculating the design sensitivity vector, each
component of which represents the contribution of the corresponding design variable.
Therefore whenever designers inspect the components of the design sensitivity vector
corresponding to a certain violated constriant, they can find the relative contribution
of each design variable to remedy that violated constriant, Two examples of
minimum-weight design with different upperbounds on the fundamental period of structure
are shown in Figure 2. The active constraints and corresponding shadow values are listed
in Table 1 while the definition of design variables and related plastic mechanisms are
shown in Figure 1 and 3, respectively. For example, two active constriants in Table 1
are taken for illustration. One is Mpi<Mijwe and the other isl.lhpe < As. The

corresponding normalized constraint functions are defined as follows:

Ya 13[2:'”-150

il

Yp ——&11{‘5 ~--1 <0

Considering that the design sensitivity vector is defined as

(247 =2 2 By
ab oby’ 9bz ' dbx

where k denotes the number of design variables, the data as shown in Table 2 reveals
that the increase of design variable 12 by one unit causes the decrease of Ya by the
amount of 126X10°° while the other design variables have almost no influence on the
change of that constriant function, to compensate the violation of this constrint, the
increase of design variable, 12 is the most effective and economical. Also, for the
second constraint function W¥p, the increase of design variables, 5 and 6, and the
decrease of design variables, 11 and 12, will give the most predominant compensation of
the violation of constraint function ypg.

Whereas the design sensitivity vector shows the relative influences of design
variables for the remedy of violated constriants, the shadow value of a certain active
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constriant function is released by the unit value. Of cource, this shadow value is an
approximate estimate because the nonlinear optimization model is linearized in the local
region and then this linearized model is solved using the gradient projection method,
However, when designers investigate all the shadow values of active constraints, they
can immediately acknowledge the relative influence of each active constriant on the
reduction of the total weight of the structure, This implies that designers can have a
clear idea on the cost and benefit resulting from the imposition of certain specific
design constraint.

A most detailed explanation is given by using the examples of Table 3 regarding the
significance of shadow values. It is intererting to note that the shadow value or price
corresponding to the constraint 1,1A,.. <15 is about three times as large as the next
largest shadow value, ¥hen the constriants, 1.14,. <A; and 1,1A;.. <25 are released by
5% or 10% in the normalized constriant functions, the actual reductions and those
expected by shadow values in structural volume are compared in Table 3. From Table 1 and
3, designers can clearly note that the contribution of design input 1.1i,.. <45 to the
increase or decrease of total structural volume is much larger than those of design
input 1.1, <2,

4. SYSTEM ANALYSIS
Structures whose span lengths are varied as shown in Figure 4 have been designed by
using the program OPTIMUM. The applied design constraints are as follows:
(i) Moment should be less than or equal to yield moment for all members.

(ii) Interstory drift should be less than or equal to ﬂgll where hy means the

corresponding story height and Cs is 5.5 in case of steel frame.

(iii) Axial force should be less than or equal to 40% or 60% of yield strength.

The result of optimization are given in Figure 5. From Figure 5, the most economic
system is shown to be system 2, The reduction of structural volume is about 10 to 20% of
its own weight when compared with other systems,

From the minimum-weight design of system 3, it can be found that the girders with
longer span are almost of the same size throughout the stories. But all the girders and
columns which constitute the smaller bay are very stiff at the lower stories and the
stiffness decreases at the higher stories goes up. This offers the hindsight that in
order to control the lateral drift efficiently, it is more economical to strengthen the
bay of the smaller span than that of longer span while the girders with the longer span
mainly resist the gravity loads. This result clearly proves the economic efficiency for
adding shear wall or bracing(dual system) from the optimization point of view.

However, if the span length becomes large, the design constraints on the axial force
can be the controlling design input as in the case of system 3. To reduce the effect of
axial force on the plastic moment and the risk of instability, ATC 3 recommends that
axial force, P, should be less than 60% of yield strength P,. But the design shown in
Figure 4(c) is based on constraint P < 0.4P, When the structural volume for P < 0.4P,
and that for P < 0.6P, are compared (135590 cubic inch versus 126410 cubic inch), the
influence of the design constraint on axial force can be clearly recognized in the case
of a long-span structure,

5. CONCLUSION

The design approach using this structural optimization program is basically
different from that of a trial-and-error method. Even if the program OPTIMM starts with
arbitrary initial design variables, it strictly follows the direct search method which



will eventually get the minimum-weight design. The real advantage of optimization is
that it demonstrates what the best design is and why. Meanwhile, the trial-and-error
desing procedure does not show designers clearly why a design is the best, instead
giving a procedure which leads to a satisfactory decision of member sizes. When calling
a design optimum, one can at least explain why it is the best for all possibie choices,
and how much cost it saves compared with other systems and what design input has the
largest influence, etc, The design reached by using the proposed procedure clearly
reveals this advantage of optimization,
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Figure 1 Geometry, load conditions and Design Variables
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Two Optimum Designs(Fig.2) Table 3 Reduction of Structural Volume
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