• Title/Summary/Keyword: Concentric annulus

Search Result 67, Processing Time 0.027 seconds

Natural Convection in a Horizontal Cylindrical Annulus Enclosing Heat Generating Core (發熱核 주위의 수령圓環 에서의 자연대류)

  • 장근식;오세윤
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.5
    • /
    • pp.663-676
    • /
    • 1985
  • 수평원통형의 복합유동층에서의 층류자연대류를 수치적으로 연구하였다. 외측의 동심원환이 내 의 발열유체로 형성된 원통형 핵을 둘러싸고, 그 사이에 두께가 유한하거나 두께를 무시할 수 있 는 간막이 벽이 존재한다. 유동특성과 열전달에 관한 매개변수적 고찰을 시행하거나 직경비, Prandt1수, 발열강도에 기준을 둔 Rayleigh수 등의 영향을 이해하게 되었다. 간막이 벽의 두께나 열전도의 효과도 제한된 범위 안에서 고려하였다.

Numerical Analysis on Effects of Radius Ratio in a Concentric Annulus with a Rotating Inner Cylinder (내부회전실린더를 가진 동심환형관에서 반경비의 영향에 관한 수치해석적 연구)

  • Bae, Kang-Youl;Kim, Hyoung-Bum;Lee, Sang-Hyuk
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.327-330
    • /
    • 2006
  • This paper represents the numerical analysis on effects of radius ratio in a concentric annulus with a rotating inner cylinder. The numerical model consisted of two cylinder which inner cylinder is rotating and outer cylinder is fix, and the axial direction is used the cyclic condition because of the length for axial direction is assumed infinite. The diameter of inner cylinder is assumed 86.8mm, the numerical parameters are angular velocity and radius ratio. Also, the whole walls of numerical model have no-slip and the working fluid is used water at $20^{\circ}C$. The numerical analysis is assumed the transient state to observe the flow variations by time and the 3-D cylindrical coordinate system. The calculation grid adopted a non-constant grid for dense arrangement near the wall side of cylinder, the standard $k-{\omega}$ high Reynolds number model to consider the effect of turbulence flow and wall, the fully implicit method for time term and the quick scheme for momentum equation. The numerical method is compared with the experimental results by Wereley and Lueptow, and the results are very good agreement. As the results, TVF isn't appeared when Re is small because of the initial flow instability is disappear by effect of the centrifugal force and viscosity. The vortex size is from 0.8 to 1.1 for TVF at various $\eta$, and the traveling distance for wavy vortex have the critical traveling distance for each case.

  • PDF

A Numerical Study on Mixed Convection Heat Transfer in Concentric Curved Annuli (동심환형 곡관의 혼합대류 열전달 현상에 관한 수치적 연구)

  • 최훈기;유근종
    • Journal of Energy Engineering
    • /
    • v.11 no.4
    • /
    • pp.283-290
    • /
    • 2002
  • Numerical calculations have been carried out for the mixed convection flow in a concentric curved annulus with constant heat flux boundary condition at inner wall. The flow is assumed to be fully developed so as to maintain a constant streamwise pressure and temperature gradient. Computations have been performed for flows of radius ratio 0.2 and 0.5 with the Dean number lying in the range 0$K^{1/2}$ for the wide range of the Dean number considered here.

An Experimental Study on the Transitional Flows in a Concentric Annu- lus with Rotating Inner Cylinder (안쪽축이 회전하는 환형관내 천이유동에 관한 연구)

  • 김영주;김철수;황영규
    • Journal of Energy Engineering
    • /
    • v.11 no.4
    • /
    • pp.299-305
    • /
    • 2002
  • The present experimental and numerical investigations are performed on the characteristics of transitional flow in a concentric annulus with a diameter ratio of 0.52, whose outer cylinder is stationary and inner one rotating. The pressure losses and skin-friction coefficients have been measured for the fully devel-oped flow of water and that of 0.2% CMC-water solution at a inner cylinder rotational speed of 0∼600 rpm, respectively. The transitional flow has been examined by the measurement of pressure losses to reveal the relation of the Reynolds and Rossby numbers with the skin-friction coefficients. The occurrence of transition has been checked by the gradient changes of pressure losses and skin-friction coefficients with respect to the Reynolds numbers. The increasing rate of skin-friction coefficient due to the rotation is uniform for laminar flow regime, whereas it is suddenly reduced for transitional flow regime and, then, it is gradually decreased for turbulent flow regime.

CONCEPTUAL FUEL CHANNEL DESIGNS FOR CANDU-SCWR

  • Chow, Chun K.;Khartabil, Hussam F.
    • Nuclear Engineering and Technology
    • /
    • v.40 no.2
    • /
    • pp.139-146
    • /
    • 2008
  • This paper presents two of the fuel channel designs being considered for the CANDU-SCWR, a pressure-tube type supercritical water cooled reactor. The first is an insulated pressure tube design. The pressure tube is thermally insulated from the hot coolant by a porous ceramic insulator. Each pressure tube is in direct contact with the moderator, which operates at an average temperature of about $80^{\circ}C$. The low temperature allows zirconium alloys to be used. A perforated metal liner protects the insulator from being damaged by the fuel bundles and erosion by the coolant. The coolant pressure is transmitted through the perforated metal liner and insulator and applied directly to the pressure tube. The second is a re-entrant design. The fuel channel consists of two concentric tubes, and a calandria tube that separates them from the moderator. The coolant enters between the annulus of the two concentric fuel channel tubes, then exits the fuel channel through the inner tube, where the fuel bundles reside. The outer tube bears the coolant pressure and its temperature will be the same as the coolant inlet temperature, ${\sim}350^{\circ}C$. Advantages and disadvantages of these designs and the material requirements are discussed.

Natural Convection in Concentric Annuli with the Nonuniform Temperature Distribution of the Inner Cylinder (내관의 온도가 불균일한 동심환상공간에서의 자연대류)

  • 김찬원;권순석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.5
    • /
    • pp.1012-1022
    • /
    • 1989
  • Numerical analysis has been performed on three-dimensional natural convection in inclined concentric annuli with the nonuniform temperature distribution of the inner cylinder. The governing equations are numerically solved by successive over-relaxation methods for various inclination angles at $R_{a}$=3*10$^{4}$, $P_{r}$=7.0 and $r_{1}$ / $r_{2}$=0.6. Temperature and Nusselt number distributions are obtained and calculated results are compared with those of published uniform temperature distributions. It is found that the mean Nusselt numbers for the nonuniform temperature distributions increase more than those for the uniform temperature distributions by about 9. 6% at .delta.= 0.deg., 7.5% at .delta. = 30.deg. and 4.6% at .delta. = 60.deg.. In the case of .delta. = 0.deg., the maximum local Nusselt numbers on the inner and outer cylinder walls show at .xi. = 0.5, 1.5 of .psio=100 .deg. and .xi. = 0.4, 1.6 of .psi. = 180 .deg.. But in the case of .delta. = 30.deg. and .delta. = 60.deg., the maximum local Nusselt numbers on the inner and other cylinder walls show at .xt. = 0.0 of .psi. = 180 .deg. and .xi. = 2.0 of .psi. = 180 .deg...

Experimental study of axial slit wall effect on Taylor-Couette flow (슬릿이 있는 Taylor-Couette 유동의 실험적 연구)

  • Lee, Sang-Hyuk;Kim, Hyoung-Bum
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3183-3186
    • /
    • 2007
  • Taylor-Couette flow may appear when the angular velocity is different between two concentric rotating cylinders. This kind of Taylor-vortex flow can be easily seen in lots of engineering problems. In general the geometries of rotating cylinders are generally complex in these cases. In this study, we investigated Taylor-Couette flow when the outer cylinder has the slit along the annulus. The radius ratio and aspect ratio of the experimental model used was 0.825 and 48, respectively. The depth of slits is 5mm and total 18 slits are azimuthally located along the inner wall of outer cylinder. We used PIV method to measure the flow and applied index matching method to resolve the complex geometry effect. The results show the model with slit has no stable wavy vortex region above Re=143.

  • PDF

Numerical Study of Taylor-Couette Flow with an Axial Flow (축방향 유동이 있는 Taylor-Couette 유동에 대한 전산 해석)

  • Hwang, Jong-Yeon;Yang, Kyung-Soo
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.444-449
    • /
    • 2001
  • The flow between two concentric cylinders, with the inner one rotating and with an imposed pressure-driven axial flow, is studied using numerical simulation. This study considers the identical flow geometry as in the experiments of Wereley and Lueptow[Phys. Fluid, 11 (12), 1999]. They carried out experiments using PIV to measure the velocity fields in a meridional plane of the annulus in detail. When an axial flow is imposed, the critical Taylor number is increased. The axial flow stabilizes the flow field and decreases the torque required to rotate the inner cylinder. The velocity vector fields obtained also show the same flow features found in the experiments of Wereley and Lueptow.

  • PDF

An Analysis of Fully Developed Turbulent Heat Transfer and Flow in an Annulus with the Square-Ribbed Roughness on Both Walls (양측벽면에 사각돌출형 거칠기가 있는 이중관내의 난류유동과 열전달 해석)

  • 안수환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.17 no.3
    • /
    • pp.33-41
    • /
    • 1993
  • 양벽면 모두 사각돌출형조도요소가 설치된 동심 이중관내에서 생기는 비대칭 난류유동과 열전달 특성을, 열전달과 마찰계수에 미치는 조도의 합성효과를 조사하기 위해, 연구하였다. 이론해석에서는 한쪽면에 거칠기가 있는 평행평판의 유동에 대한 수정 플란틀 혼합길이(mixing length)이론의 난류 모델을 속도분포와 마찰계수를 구하는데 사용하였다. 최대속도지점에서 안쪽과 바깥쪽의 두 속도형상들은 힘의 평형에 의해 일치시켰다. 그리고 나서, 온도 분포와 열전달 계수를 계산하였다. 속도형성과 마찰계수들의 해석결과는 실험과 매우 잘 일치하였다. 마찰계수와 Nusselt number에 미치는 조도비, 조도에 대한 피치비, 그리고 반경비등과 같은 여러 변수들의 효과들을 조사하였다. 본 연구는 일정의 조도 요소들이 전체적 효율 측면에서 볼때 유리하게 열전달을 향상시킨다는 것을 증명하였다.

  • PDF