• Title/Summary/Keyword: Concentration Model

Search Result 5,252, Processing Time 0.029 seconds

Pollutant Dispersion Analysis Using the Gaussian Puff Model with the Numerical Flowfield Information (유동장 수치해석이 포함된 퍼프모델을 이용한 오염물질의 확산 해석)

  • Jung Y. R.;Park W. G.;Park O. H.
    • Journal of computational fluids engineering
    • /
    • v.4 no.3
    • /
    • pp.12-20
    • /
    • 1999
  • The computations of the flowfield and pollutant dispersion over a flat plate and the Russian hills of various slopes are described. The Gaussian plume and the puff model have been used to calculate concentration of pollutant. The Reynolds-averaged unsteady incompressible Navier-Stokes equation with low Reynolds κ-ε model has been used to calculate the flowfield. The flow data of a flat plate and the Russian hills from Navier-Stokes equation solutions has been used as the input data for the puff model. The computational results of flowfield agree well with experimental results of both a flat plate and Russian hills. The concentration prediction by the Gaussian plume model and the Gaussian puff model also agrees flirty well with experiments.

  • PDF

Characterization of Channel Electric Field in LDD MOSFET (LDD MOSFET채널 전계의 특성 해석)

  • 한민구;박민형
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.6
    • /
    • pp.401-415
    • /
    • 1989
  • A simple but accurate analytical model for the lateral channel electric field in gate-offset structured Lightly Doped Drain MOSFET has been developed. Our model assumes Gaussian doping profile, rather than simple uniform doping, for the lightly doped region and our model can be applied to LDD structures where the junction depth of LDD is not identical to the heavily doped drain. The validity of our model has been proved by comparing our analytical results with two dimensional device simulations. Due to its simplicity, our model gives a better understanding of the mechanisms involved in reducing the electric field in the LDD MOSFET. The model shows clearly the dependencies of the lateral channel electric field on the drain and gate bias conditions and process, design parameters. Advantages of our analytical model over costly 2-D device simulations is to identify the effects of various parameters, such as oxide thickness, junction depth, gate/drain bias, the length and doping concentration of the lightly doped region, on the peak electric field that causes hot-electron pohenomena, individually. Our model can also find the optimum doping concentration of LDD which minimizes the peak electric field and hot-electron effects.

  • PDF

Development of an Efficiency Calibration Model Optimization Method for Improving In-Situ Gamma-Ray Measurement for Non-Standard NORM Residues (비정형 공정부산물 In-Situ 감마선 측정 정확도 향상을 위한 효율교정 모델 최적화 방법 개발)

  • WooCheol Choi;Tae-Hoon Jeon;Jung-Ho Song;KwangPyo Kim
    • Journal of Radiation Industry
    • /
    • v.17 no.4
    • /
    • pp.471-479
    • /
    • 2023
  • In In-situ radioactivity measurement techniques, efficiency calibration models use predefined models to simulate a sample's geometry and radioactivity distribution. However, simplified efficiency calibration models lead to uncertainties in the efficiency curves, which in turn affect the radioactivity concentration results. This study aims to develop an efficiency calibration optimization methodology to improve the accuracy of in-situ gamma radiation measurements for byproducts from industrial facilities. To accomplish the objective, a drive mechanism for rotational measurement of an byproduct simulator and a sample was constructed. Using ISOCS, an efficiency calibration model of the designed object was generated. Then, the sensitivity analysis of the efficiency calibration model was performed, and the efficiency curve of the efficiency calibration model was optimized using the sensitivity analysis results. Finally, the radiation concentration of the simulated subject was estimated, compared, and evaluated with the designed certification value. For the sensitivity assessment of the influencing factors of the efficiency calibration model, the ISOCS Uncertainty Estimator was used for the horizontal and vertical size and density of the measured object. The standard deviation of the measurement efficiency as a function of the longitudinal size and density of the efficiency calibration model decreased with increasing energy region. When using the optimized efficiency calibration model, the measurement efficiency using IUE was improved compared to the measurement efficiency using ISOCS at the energy of 228Ac (911 keV) for the nuclide under analysis. Using the ISOCS efficiency calibration method, the difference between the measured radiation concentration and the design value for each simulated subject measurement direction was 4.1% (1% to 10%) on average. The difference between the estimated radioactivity concentration and the design value was 3.6% (1~8%) on average when using the ISOCS IUE efficiency calibration method, which was closer to the design value than the efficiency calibration method using ISOCS. In other words, the estimated radioactivity concentration using the optimized efficiency curve was similar to the designed radioactivity concentration. The results of this study can be utilized as the main basis for the development of regulatory technologies for the treatment and disposal of waste generated during the operation, maintenance, and facility replacement of domestic byproduct generation facilities.

Numerical Simulation of Complicated Photochemical Reactions Occurring in the Atmosphere (대기내 발생하는 복잡한 광화학반응에 대한 수치실험)

  • Won Gyeong-Mee;Kim Yoo-Keun;Lee Haw-Woon;Kim Hee-Jeoung
    • Journal of Environmental Science International
    • /
    • v.15 no.3
    • /
    • pp.203-209
    • /
    • 2006
  • In predicting oxidants concentration, the most important fact is to select a suitable photochemical reaction mechanism. Sensitivity analysis of $O_3$ and other important photochemical oxidants concentrations was conducted by using CBM-IV model. The predicted oxidants concentration was considerably related with the initial concentration of formaldehyde, $[NO_2]/[NO],\;NO_x$, RH and RCHO. As the initial concentration of formaldehyde increased, concentration of $NO_2$ increased. $O_3$ concentration was proportional to the $[NO_2]/[NO]$ ratio. When the initial concentrations of RH and RCHO were high, photochemical reaction was more reactive, including more rapid conversion of NO to $NO_2$ and increased oxidants. Also, the sensitivities of ozone formation to rate constants, $K_l,\;K_2\;and\;K_3$ in the $NO_2$ photolysis were studied.

Effects of Aerosol Hygroscopicity on Fine Particle Mass Concentration and Light Extinction Coefficient at Seoul and Gosan in Korea

  • Choi, Eun-Kyung;Kim, Yong-Pyo
    • Asian Journal of Atmospheric Environment
    • /
    • v.4 no.1
    • /
    • pp.55-61
    • /
    • 2010
  • The sensitivity of aerosol light extinction coefficient to the aerosol chemical composition change is estimated by (1) calculating the aerosol water content and chemical concentrations by a gas/particle equilibrium model and (2) calculating the aerosol light extinction coefficient by a Mie theory based optical model. The major chemical species are total (gas and particle phase) sulfuric acid, total nitric acid, and total ammonia which are based on the measurement data at Seoul and Gosan. At Seoul, since there were enough ammonia to neutralize both total sulfuric acid and total nitric acid, the dry ionic concentration is most sensitive to the variation of the total nitric acid level, while the total mass concentration (ionic concentration plus water content) and thus, the aerosol light extinction coefficient are primarily determined by the total sulfuric acid. At Gosan, since the concentration of ambient sulfuric acid was the highest among the inorganic species, sulfate salts determined aerosol hygroscopicity. Thus, both ionic and total mass concentration, and resultant aerosol light extinction coefficient are primarily determined by the sulfuric acid level.

Water Quality Model Development for Loading Estimates from Paddy Field (논에서의 오염부하 예측을 위한 범용모형 개발)

  • Jeon, Ji-Hong;Hwang, Ha-Sun;Yoon, Kwang-Sik;Yoon, Chun-Gyeong
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.3 s.104
    • /
    • pp.344-355
    • /
    • 2003
  • Water quality model applicable paddy field was developed using field experiment during 1999 ${\sim}$ 2002. This model involves inputs from fertilization and sediment release as dirac delta function and continuous source function, respectively, and can simulate various processes such as ponded depth, surface drainage, total nitrogen concentration and total phosphorus concentration in a daily basis. The model was calibrated using data collected from field experiments which was irrigated with ground water and validated from field experiments which was irrigated with surface water. The nutrient concentration of surface water depended on the fertilization and dirac delta function can efficiently explain the valiance of nutrient concentration of surface water by fertilizer. As a result of calibration and validation, this model demonstrates good agreement. The model fit efficiencies ($R^2$) of ponded depth, surface concentration of TN and TP were 0.93,0.98 and 0.95, respectively for calibration, and those of TN and TP were 0.99 and 0.70, respectively for validation. We can apply lake and reservoir model to analysis paddy field considered with shallow ponded system, but it will need so many parameters and have much uncertainty. Fortunately, paddy field have a series of cultural practices yearly basis, such as irrigation-fertilization-forced drain-harvest with a similar time , so simple model may explain the mechanism for paddy field. Water quality model for paddy field developed in this study is simply, needs little parameters, but appeared high applicability to evaluate paddy filed drainage. We recommend this model to estimate nutrient loading from paddy field and establish best management practice.

A Development of PM10 Forecasting System (미세먼지 예보시스템 개발)

  • Koo, Youn-Seo;Yun, Hui-Young;Kwon, Hee-Yong;Yu, Suk-Hyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.6
    • /
    • pp.666-682
    • /
    • 2010
  • The forecasting system for Today's and Tomorrow's PM10 was developed based on the statistical model and the forecasting was performed at 9 AM to predict Today's 24 hour average PM10 concentration and at 5 PM to predict Tomorrow's 24 hour average PM10. The Today's forecasting model was operated based on measured air quality and meteorological data while Tomorrow's model was run by monitored data as well as the meteorological data calculated from the weather forecasting model such as MM5 (Mesoscale Meteorological Model version 5). The observed air quality data at ambient air quality monitoring stations as well as measured and forecasted meteorological data were reviewed to find the relationship with target PM10 concentrations by the regression analysis. The PM concentration, wind speed, precipitation rate, mixing height and dew-point deficit temperature were major variables to determine the level of PM10 and the wind direction at 500 hpa height was also a good indicator to identify the influence of long-range transport from other countries. The neural network, regression model, and decision tree method were used as the forecasting models to predict the class of a comprehensive air quality index and the final forecasting index was determined by the most frequent index among the three model's predicted indexes. The accuracy, false alarm rate, and probability of detection in Tomorrow's model were 72.4%, 0.0%, and 42.9% while those in Today's model were 80.8%, 12.5%, and 77.8%, respectively. The statistical model had the limitation to predict the rapid changing PM10 concentration by long-range transport from the outside of Korea and in this case the chemical transport model would be an alternative method.

Optimization for the Bacterial Cellulose Production of Acetobacter xylinum KJ1 by Factorial Design (Factorial design에 의한 Acetobacter xylinum KJ1의 Bacterial cellulose 생산조건의 최적화)

  • 김성준;이지은;정상기;이용운
    • KSBB Journal
    • /
    • v.17 no.3
    • /
    • pp.228-234
    • /
    • 2002
  • Acetobacter xylinum KJ1 efficiently producing bacterial cellulose(BC) In shaking culture was isolated from a rotten grape. The strain was used to investigate optimum operating conditions for increasing BC production and factorial design model was employed for the optimization. The results of experiments were statistically analyzed by SAS program. Reciprocal effects of each factors(carbon source concentration, shaking speeds(rpm), oxygen pressure, and CSL concentration) and culture condition of BC production were examined by getting regression equation of the dependent variable. Comparisons between experimental results and predicted results about BC concentration were done in total 24 experiments by combination of each factors using SAS program, and the correlation coefficients of BC concentration and BC yield were 0.91 and 0.81, respectively. The agitated cultures were peformed in various operation conditions of factors which affected considerably to BC production in jar fermentor. The results showed that BC concentration was 11.67 g/L in 80 hours cultivation under the condition of carbon source concentration : shaking speeds(rpm) : oxygen pressure : CSL concentration : 4% : 460 rpm : 0.28 : 6%. On the other hand BC yield was 0.42 g/g in 80 hours cultivation under the condition of carbon source concentration : shaking speeds(rpm) : oxygen pressure : CSL concentration : 4% : 564 rpm : 0.21 : 2%. The BC production could be enhanced up to more than 2.4 times by factorial design. The result of a verifying experiment under the optimal conditions determined by the factorial design to the BC production showed that the model was appropriate by obtaining BC concentration of 11.47 g/L in the optimum condition.

Effects of Emission from Seoul Metropolitan Area on Air Quality of Surrounding Area Using MESOPUFF II Model (MESOPUFF II모델을 이용한 서울시 $SO_2$배출량이 주변지역 대기질에 미치는 영향 분석)

  • 조창래;이종범
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.6
    • /
    • pp.563-576
    • /
    • 1998
  • To study the influences of the emission sources during lune 13∼15 1997 in Seoul, MESOPVFF II model has been used. The MESOPVFF II model includes terrain effects, chemical transformation and removal processes. Data of 20 surface meteorological stations and the upper air station on mid-west area in Korea were used as a DWM (Diagnostic Wind Model) input data. This model is likely to be applicable because the predicted SO2 concentration was well matched with measured 502 concentration in Seoul and Kyonggido. In generally air pollutants in Seoul have major influence on the other cities but the result of modeling appeared also air pollutants of the other cities influence on Seoul. Finally, in the case of calculating the air quality by diffusion model, the influences of air pollutants emitted in metropolitan area as well as the emission rate in modeling area should be considered.

  • PDF

Implementation of local model for non-local impact ionization (Non-local impact ionization 현상해석을 위한 local model 개발)

  • 염기수
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.05a
    • /
    • pp.385-388
    • /
    • 1999
  • A new local model for impact ionization coefficients is proposed to account for a non-local effect. New model uses an effective electric field which comes from the path integral of a tangent electric field at an arbitrary point. The model consists of local variables, such as doping concentration, carrier concentration and gradient of the field, and can be easily applied to a conventional drift-diffusion device simulator. By comparing the results with Monte Carlo simulation, it is confirmed that new model explains the non-local effect fairly well.

  • PDF