• 제목/요약/키워드: Concentrated polymer solutions

검색결과 22건 처리시간 0.026초

Migration in concentrated suspension of spherical particles dispersed in polymer solution

  • Kim, Chongyoup
    • Korea-Australia Rheology Journal
    • /
    • 제13권1호
    • /
    • pp.19-27
    • /
    • 2001
  • In this symposium paper, the migration and hydrodynamic diffusion of non-colloidal, spherical particles suspended in polymer solutions are considered under Poiseuille or torsional flows. The migration phenomena in polymer solutions are compared with those in Newtonian fluids and the effect of fluid elasticity is discussed. The experimental results on particle migration in dilute polymer solution reveal that even a slight change in the rheological property of the dispersing medium can induce drastic differences in flow behavior and migration of particles, especially in dilute and semi-concentrated suspensions.

  • PDF

고분자용액에 의한 유체수송관벽의 저항감소 -III. 저항감소유체의 입구흐름 영역에 대한 고찰- (Drag Reducton of Pipe Wall For Fluid Flow due to Injected Polymer Solution - III. Consideration of Entrance Region Flow of Drag Reducing Fluids-)

  • 김영보;유경옥
    • 한국화재소방학회논문지
    • /
    • 제5권2호
    • /
    • pp.21-35
    • /
    • 1991
  • As a part of studies of drag reduction phenomenon, at the entrance flow region of abrupt contraction tube flowing water, dilute and concentrated drag reducing polymer solutions contraction losses are estimated experimentally. Futher more, entrance lengths are considered theoretically and are measured experimentally. In the present experiment, fluid temperature is fixed l$0^{\circ}C$ and flow rates are 3,000

  • PDF

Kinematics of filament stretching in dilute and concentrated polymer solutions

  • McKinley, Gareth H.;Brauner, Octavia;Yao, Minwu
    • Korea-Australia Rheology Journal
    • /
    • 제13권1호
    • /
    • pp.29-35
    • /
    • 2001
  • The development of filament stretching extensional rheometers over the past decade has enabled the systematic measurement of the transient extensional stress growth in dilute and semi-dilute polymer solutions. The strain-hardening in the extensional viscosity of dilute solutions overwhelms the perturbative effects of capillarity, inertia & gravity and the kinematics of the extensional deformation become increasingly homogeneous at large strains. This permits the development of a robust open-loop control algorithm for rapidly realizing a deformation with constant stretch history that is desired for extensional rheometry. For entangled fluids such as concentrated solutions and melts the situation is less well defined since the material functions are governed by the molecular weight between entanglements, and the fluids therefore show much less pronounced strain-hardening in transient elongation. We use experiments with semi-dilute/entangled and concentrated/entangled monodisperse polystyrene solutions coupled with time-dependent numerical computations using nonlinear viscoelastic constitutive equations such as the Giesekus model in order to show that an open-loop control strategy is still viable for such fluids. Multiple iterations using a successive substitution may be necessary, however, in order to obtain the true transient extensional viscosity material function. At large strains and high extension rates the extension of fluid filaments in both dilute and concentrated polymer solutions is limited by the onset of purely elastic instabilities which result in necking or peeling of the elongating column. The mode of instability is demonstrated to be a sensitive function of the magnitude of the strain-hardening in the fluid sample. In entangled solutions of linear polymers the observed transition from necking instability to peeling instability observed at high strain rates (of order of the reciprocal of the Rouse time for the fluid) is directly connected to the cross-over from a reptative mechanism of tube orientation to one of chain extension.

  • PDF

Structures of Two-dimensional Ring Polymer Solutions using Bond Fluctuation Model

  • Shin, Donghan;Lee, Eunsang;Jung, YounJoon
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제5회(2016년)
    • /
    • pp.155-162
    • /
    • 2016
  • This study attempts to reveal structures of two-dimensional ring polymer solutions in various polymer concentrations ranging from dilute to concentrated regime. Polymer sizes, single molecule structure factors, bond correlation functions and monomer density distribution functions from center of mass are given in order to clarify the polymer structures. Our study shows that a ring in dilute solution maintain pseudo-circular structure with self-avoiding walk (SAW) statistics, and it seems to be composed of two connecting SAW linear chains. In semidilute solutions, ring polymers are not entangled with each other and adopt collapsed configurations. Such assumption of collapsed structures in the semidilute regime gives an overlap concentration of ${\varphi}^*{\sim}N^{-1/2}$ where N is degree of polymerization. By normalizing the polymer concentration by these overlap concentration, we find universal behaviors of polymer sizes and structure factors regardless of N.

  • PDF

Rheology of Concentrated Xanthan Gum Solutions : Steady Shear Flow Behavior

  • Song Ki-Won;Kim Yong-Seok;Chang Gap-Shik
    • Fibers and Polymers
    • /
    • 제7권2호
    • /
    • pp.129-138
    • /
    • 2006
  • Using a strain-controlled rheometer, the steady shear flow properties of aqueous xanthan gum solutions of different concentrations were measured over a wide range of shear rates. In this article, both the shear rate and concentration dependencies of steady shear flow behavior are reported from the experimentally obtained data. The viscous behavior is quantitatively discussed using a well-known power law type flow equation with a special emphasis on its importance in industrial processing and actual usage. In addition, several inelastic-viscoplastic flow models including a yield stress parameter are employed to make a quantitative evaluation of the steady shear flow behavior, and then the applicability of these models is also examined in detail. Finally, the elastic nature is explained with a brief comment on its practical significance. Main results obtained from this study can be summarized as follows: (1) Concentrated xanthan gum solutions exhibit a finite magnitude of yield stress. This may come from the fact that a large number of hydrogen bonds in the helix structure result in a stable configuration that can show a resistance to flow. (2) Concentrated xanthan gum solutions show a marked non-Newtonian shear-thinning behavior which is well described by a power law flow equation and may be interpreted in terms of the conformational status of the polymer molecules under the influence of shear flow. This rheological feature enhances sensory qualities in food, pharmaceutical, and cosmetic products and guarantees a high degree of mix ability, pumpability, and pourability during their processing and/or actual use. (3) The Herschel-Bulkley, Mizrahi-Berk, and Heinz-Casson models are all applicable and have equivalent ability to describe the steady shear flow behavior of concentrated xanthan gum solutions, whereas both the Bingham and Casson models do not give a good applicability. (4) Concentrated xanthan gum solutions exhibit a quite important elastic flow behavior which acts as a significant factor for many industrial applications such as food, pharmaceutical, and cosmetic manufacturing processes.

Rheology of concentrated xanthan gum solutions: Oscillatory shear flow behavior

  • Song Ki-Won;Kuk Hoa-Youn;Chang Gap-Shik
    • Korea-Australia Rheology Journal
    • /
    • 제18권2호
    • /
    • pp.67-81
    • /
    • 2006
  • Using a strain-controlled rheometer, the dynamic viscoelastic properties of aqueous xanthan gum solutions with different concentrations were measured over a wide range of strain amplitudes and then the linear viscoelastic behavior in small amplitude oscillatory shear flow fields was investigated over a broad range of angular frequencies. In this article, both the strain amplitude and concentration dependencies of dynamic viscoelastic behavior were reported at full length from the experimental data obtained from strain-sweep tests. In addition, the linear viscoelastic behavior was explained in detail and the effects of angular frequency and concentration on this behavior were discussed using the well-known power-law type equations. Finally, a fractional derivative model originally developed by Ma and Barbosa-Canovas (1996) was employed to make a quantitative description of a linear viscoelastic behavior and then the applicability of this model was examined with a brief comment on its limitations. Main findings obtained from this study can be summarized as follows: (1) At strain amplitude range larger than 10%, the storage modulus shows a nonlinear strain-thinning behavior, indicating a decrease in storage modulus as an increase in strain amplitude. (2) At strain amplitude range larger than 80%, the loss modulus exhibits an exceptional nonlinear strain-overshoot behavior, indicating that the loss modulus is first increased up to a certain strain amplitude(${\gamma}_0{\approx}150%$) beyond which followed by a decrease in loss modulus with an increase in strain amplitude. (3) At sufficiently large strain amplitude range (${\gamma}_0>200%$), a viscous behavior becomes superior to an elastic behavior. (4) An ability to flow without fracture at large strain amplitudes is one of the most important differences between typical strong gel systems and concentrated xanthan gum solutions. (5) The linear viscoelastic behavior of concentrated xanthan gum solutions is dominated by an elastic nature rather than a viscous nature and a gel-like structure is present in these systems. (6) As the polymer concentration is increased, xanthan gum solutions become more elastic and can be characterized by a slower relaxation mechanism. (7) Concentrated xanthan gum solutions do not form a chemically cross-linked stable (strong) gel but exhibit a weak gel-like behavior. (8) A fractional derivative model may be an attractive means for predicting a linear viscoelastic behavior of concentrated xanthan gum solutions but classified as a semi-empirical relationship because there exists no real physical meaning for the model parameters.

점탄성 고분자 용액의 정상유동특성과 동적 유변학적 성질의 상관관계 -비선헝 스트레인 척도를 사용한 Cox-Merz 법칙의 검증- (Relationship between Steady Flow and Dynamic Rheological Properties for Viscoelastic Polymer Solutions - Examination of the Cox-Merz Rule Using a Nonlinear Strain Measure -)

  • 송기원;김대성;장갑식
    • 유변학
    • /
    • 제10권4호
    • /
    • pp.234-246
    • /
    • 1998
  • 본 연구의 목적은 고분자 농후용액의 정상유동특성(비선형 거동)과 소진폭 전단변형하에서의 동적 점탄성(선형 거동) 간에 존재하는 상관관계를 파악함에 있다. 이를 위해 Advanced Rheometric Expansion System(ARES)과 Rheometrics Fluids Spectrometer (RFS II)를 사용하여 폴리에틸렌 옥사이드, 폴리이소부틸렌 및 폴리아크릴 아마이드 농후용액의 정상류점도 및 동적 선형 점탄성을 광범위한 전단속도와 각주파수 영역에서 측정하였다. 이들 측정결과로부터 정상류점도와 동적점도 또는 동적 유동성간의 상관관계를 제시한 몇 가지 관계식의 적용성을 비교.검토하였다. 그리고 정상류점도와 복소점도의 절대치를 비교하여 양자간의 등가관계를 나타내는 Cox-Merz 법칙의 적용성에 대한 농도의 영향을 실험적으로 검증하였다. 나아가서 대변형하에서의 비선형성의 정도를 나타내는 비선형 스트레인 척도의 개념을 도입하여 Cox-Merz 법칙의 적용성에 미치는 영향을 이론적 관점에서 고찰하였다. 이상의 연구를 통해 얻어진 결과를 요약하면 다음과 같다. (1) 정상류점도의 전단속도 의존성과 동적 점탄성의 각주파수 의존성간에 제시된 여러 관계식들 중에서 정상류점도와 복소점도 절대치간의 등가관계를 나타내는 Cox-Merz법칙이 가장 우수한 적용성을 갖는다. (2) 높은 전단속도 또는 각주파수 영역에서는 정상류점도와 복소점도의 관계가 용액 농도에 따라 서로 상이하게 나타난다. 즉 낮은 농도의 용액에서는 정상류점도가 복소점도에 비해 다소 큰 값을 나타내며, 농도가 증가할수록 이러한 경향은 역전되어 높은 농도의 용액에서는 복소점도가 정상류점도에 비해 큰 값을 갖는다. (3) 비선형 스트레인 척도는 작은 크기의 변형량에서는 직선적으로 증가하다가 점차적으로 그 증가율이 감소하여 최대치에 도달한 후 그 이상의 변형량 영역에서는 변형량이 증가함에 따라 점차 감소하는 거동을 나타낸다. 이러한 거동은 스트레인 증가에 따라 진폭이 점차로 감소하는 감쇠진동함수의 형태를 갖는 이론적 예측과는 상당한 차이를 나타낸다. (4) 대변형하에서 비선형 스트레인 척도의 기울기 (고분자 용액의 비선형성의 정도)는 Cox-Merz 법칙의 적용성에 영향을 미치며, 이 값이 감소할수록 Cox-Merz 법칙은 더욱 잘 성립한다.

  • PDF