• Title/Summary/Keyword: Computer Networks

Search Result 5,223, Processing Time 0.031 seconds

Analysis on NDN Testbeds for Large-scale Scientific Data: Status, Applications, Features, and Issues (과학 빅데이터를 위한 엔디엔 테스트베드 분석: 현황, 응용, 특징, 그리고 이슈)

  • Lim, Huhnkuk;Sin, Gwangcheon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.7
    • /
    • pp.904-913
    • /
    • 2020
  • As the data volumes and complexity rapidly increase, data-intensive science handling large-scale scientific data needs to investigate new techniques for intelligent storage and data distribution over networks. Recently, Named Data Networking (NDN) and data-intensive science communities have inspired innovative changes in distribution and management for large-scale experimental data. In this article, analysis on NDN testbeds for large-scale scientific data such as climate science data and High Energy Physics (HEP) data is presented. This article is the first attempt to analyze existing NDN testbeds for large-scale scientific data. NDN testbeds for large-scale scientific data are described and discussed in terms of status, NDN-based application, and features, which are NDN testbed instance for climate science, NDN testbed instance for both climate science and HEP, and the NDN testbed in SANDIE project. Finally various issues to prevent pitfalls in NDN testbed establishment for large-scale scientific data are analyzed and discussed, which are drawn from the descriptions of NDN testbeds and features on them.

Approach to Improving the Performance of Network Intrusion Detection by Initializing and Updating the Weights of Deep Learning (딥러닝의 가중치 초기화와 갱신에 의한 네트워크 침입탐지의 성능 개선에 대한 접근)

  • Park, Seongchul;Kim, Juntae
    • Journal of the Korea Society for Simulation
    • /
    • v.29 no.4
    • /
    • pp.73-84
    • /
    • 2020
  • As the Internet began to become popular, there have been hacking and attacks on networks including systems, and as the techniques evolved day by day, it put risks and burdens on companies and society. In order to alleviate that risk and burden, it is necessary to detect hacking and attacks early and respond appropriately. Prior to that, it is necessary to increase the reliability in detecting network intrusion. This study was conducted on applying weight initialization and weight optimization to the KDD'99 dataset to improve the accuracy of detecting network intrusion. As for the weight initialization, it was found through experiments that the initialization method related to the weight learning structure, like Xavier and He method, affects the accuracy. In addition, the weight optimization was confirmed through the experiment of the network intrusion detection dataset that the Adam algorithm, which combines the advantages of the Momentum reflecting the previous change and RMSProp, which allows the current weight to be reflected in the learning rate, stands out in terms of accuracy.

Extracting Scheme of Compiler Information using Convolutional Neural Networks in Stripped Binaries (스트립 바이너리에서 합성곱 신경망을 이용한 컴파일러 정보 추출 기법)

  • Lee, Jungsoo;Choi, Hyunwoong;Heo, Junyeong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.4
    • /
    • pp.25-29
    • /
    • 2021
  • The strip binary is a binary from which debug symbol information has been deleted, and therefore it is difficult to analyze the binary through techniques such as reverse engineering. Traditional binary analysis tools rely on debug symbolic information to analyze binaries, making it difficult to detect or analyze malicious code with features of these strip binaries. In order to solve this problem, the need for a technology capable of effectively extracting the information of the strip binary has emerged. In this paper, focusing on the fact that the byte code of the binary file is generated very differently depending on compiler version, optimazer level, etc. For effective compiler version extraction, the entire byte code is read and imaged as the target of the stripped binaries and this is applied to the convolution neural network. Finally, we achieve an accuracy of 93.5%, and we provide an opportunity to analyze stripped binary more effectively than before.

Characterization and Classification of Pores in Metal 3D Printing Materials with X-ray Tomography and Machine Learning (X-ray tomography 분석과 기계 학습을 활용한 금속 3D 프린팅 소재 내의 기공 형태 분류)

  • Kim, Eun-Ah;Kwon, Se-Hun;Yang, Dong-Yeol;Yu, Ji-Hun;Kim, Kwon-Ill;Lee, Hak-Sung
    • Journal of Powder Materials
    • /
    • v.28 no.3
    • /
    • pp.208-215
    • /
    • 2021
  • Metal three-dimensional (3D) printing is an important emerging processing method in powder metallurgy. There are many successful applications of additive manufacturing. However, processing parameters such as laser power and scan speed must be manually optimized despite the development of artificial intelligence. Automatic calibration using information in an additive manufacturing database is desirable. In this study, 15 commercial pure titanium samples are processed under different conditions, and the 3D pore structures are characterized by X-ray tomography. These samples are easily classified into three categories, unmelted, well melted, or overmelted, depending on the laser energy density. Using more than 10,000 projected images for each category, convolutional neural networks are applied, and almost perfect classification of these samples is obtained. This result demonstrates that machine learning methods based on X-ray tomography can be helpful to automatically identify more suitable processing parameters.

The Efficient Ship Wireless Sensor Network Using Drone (드론을 활용한 효율적인 선박 센서 네트워크)

  • Hong, Sung-Hwa;Kim, Byoung-Kug
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.1
    • /
    • pp.122-127
    • /
    • 2022
  • Currently, the drone is considered as a mobile base station of USN as a method to act as a base station using USN in existing LTE-M and LTE networks for data transmission in unmanned ships. Therefore, the drone, which is a mobile base station, is a sink node equipped with an LTE modem or a short-range communication modem, and can collect safety information of ship operation from the sensor node and transmit the safety information to the ship or transmit the information between the ships. As, if a short-range network is formed by using drones, it will form a communication network around unmanned ships and will be advantageous for collecting information using security and environmental sensors. In this paper, we propose a method to transmit environmental sensor data and to utilize communication between ships using drones to secure the surrounding information necessary for AI operation of unmanned ships in the future.

Cache Policy based on Producer Distance to Reduce Response Time in CCN (CCN에서 응답시간 감소를 위한 생산자 거리 기반 캐시정책)

  • Kim, Keon;Kwon, Tae-Wook
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.6
    • /
    • pp.1121-1132
    • /
    • 2021
  • Nowadays, it is more difficult to find people who do not use mobile devices such as smartphones and tablets. Contents that can be accessed at the touch of a finger is overflowing. However, the existing network has a structure in which it is difficult to efficiently respond to the problems caused by overflowing contents. In particular, the bottleneck problem that occurs when multiple users intensively request content from the server at the same time is a representative problem. To solve this problem, the CCN has emerged as an alternative to future networks. CCN uses the network bandwidth efficiently through the In-Network Cache function of the intermediate node to improve the traffic required for user to request to reach the server, to reduce response time, and to distribute traffic concentration within the network. I propose a cache policy that can improve efficiency in such a CCN environment.

Channel Searching Sequence for Rendezvous in CR Using Sidel'nikov Sequence (시델니코프 수열을 활용한 인지통신의 Rendezvous를 위한 채널 탐색 수열)

  • Jang, Jiwoong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.11
    • /
    • pp.1566-1573
    • /
    • 2021
  • Rendezvous is a process that assists nodes in a Cognitive Radio Networks (CRNs) to discover each other. In CRNs where a common control channel is unknown and a number of channels are given, it is important how two nodes find each other in a known search region. In this paper, I have proposed and analyzed a channel hopping sequence using Sidel'nikov sequence by which each node visits an available number of channels. I analyze the expected time to-rendezvous (TTR) mathematically. I also verify the Rendezvous performance of proposed sequence in the view of TTR under 2 user environment compared with JS algorithm and GOS algorithm. The Rendezvous performance of proposed sequence is much better than GOS algorithm and similar with JS algorithm. But when M is much smaller than p, the performance of proposed sequence is better than JS algorithm.

Regionalized TSCH Slotframe-Based Aerial Data Collection Using Wake-Up Radio (Wake-Up Radio를 활용한 지역화 TSCH 슬롯프레임 기반 항공 데이터 수집 연구)

  • Kwon, Jung-Hyok;Choi, Hyo Hyun;Kim, Eui-Jik
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.2
    • /
    • pp.1-6
    • /
    • 2022
  • This paper presents a regionalized time slotted channel hopping (TSCH) slotframe-based aerial data collection using wake-up radio. The proposed scheme aims to minimize the delay and energy consumption when an unmanned aerial vehicle (UAV) collects data from sensor devices in the large-scale service area. To this end, the proposed scheme divides the service area into multiple regions, and determines the TSCH slotframe length for each region according to the number of cells required by sensor devices in each region. Then, it allocates the cells dedicated for data transmission to the TSCH slotframe using the ID of each sensor device. For energy-efficient data collection, the sensor devices use a wake-up radio. Specifically, the sensor devices use a wake-up radio to activate a network interface only in the cells allocated for beacon reception and data transmission. The simulation results showed that the proposed scheme exhibited better performance in terms of delay and energy consumption compared to the existing scheme.

Predicting patient experience of Invisalign treatment: An analysis using artificial neural network

  • Xu, Lin;Mei, Li;Lu, Ruiqi;Li, Yuan;Li, Hanshi;Li, Yu
    • The korean journal of orthodontics
    • /
    • v.52 no.4
    • /
    • pp.268-277
    • /
    • 2022
  • Objective: Poor experience with Invisalign treatment affects patient compliance and, thus, treatment outcome. Knowing the potential discomfort level in advance can help orthodontists better prepare the patient to overcome the difficult stage. This study aimed to construct artificial neural networks (ANNs) to predict patient experience in the early stages of Invisalign treatment. Methods: In total, 196 patients were enrolled. Data collection included questionnaires on pain, anxiety, and quality of life (QoL). A four-layer fully connected multilayer perception with three backpropagations was constructed to predict patient experience of the treatment. The input data comprised 17 clinical features. The partial derivative method was used to calculate the relative contributions of each input in the ANNs. Results: The predictive success rates for pain, anxiety, and QoL were 87.7%, 93.4%, and 92.4%, respectively. ANNs for predicting pain, anxiety, and QoL yielded areas under the curve of 0.963, 0.992, and 0.982, respectively. The number of teeth with lingual attachments was the most important factor affecting the outcome of negative experience, followed by the number of lingual buttons and upper incisors with attachments. Conclusions: The constructed ANNs in this preliminary study show good accuracy in predicting patient experience (i.e., pain, anxiety, and QoL) of Invisalign treatment. Artificial intelligence system developed for predicting patient comfort has potential for clinical application to enhance patient compliance.

COVID-19 Lung CT Image Recognition (COVID-19 폐 CT 이미지 인식)

  • Su, Jingjie;Kim, Kang-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.3
    • /
    • pp.529-536
    • /
    • 2022
  • In the past two years, Severe Acute Respiratory Syndrome Coronavirus-2(SARS-CoV-2) has been hitting more and more to people. This paper proposes a novel U-Net Convolutional Neural Network to classify and segment COVID-19 lung CT images, which contains Sub Coding Block (SCB), Atrous Spatial Pyramid Pooling(ASPP) and Attention Gate(AG). Three different models such as FCN, U-Net and U-Net-SCB are designed to compare the proposed model and the best optimizer and atrous rate are chosen for the proposed model. The simulation results show that the proposed U-Net-MMFE has the best Dice segmentation coefficient of 94.79% for the COVID-19 CT scan digital image dataset compared with other segmentation models when atrous rate is 12 and the optimizer is Adam.