• Title/Summary/Keyword: Computer Modeling

Search Result 3,420, Processing Time 0.032 seconds

Workload-Aware Page Size Modeling for Fast Storage in Virtualized Environments (가상화 환경에서 고속 스토리지를 위한 워크로드 맞춤형 페이지 크기 모델링)

  • Bahn, Hyokyung;Park, Yunjoo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.3
    • /
    • pp.93-98
    • /
    • 2022
  • Recently, fast storage media such as Optane have emerged, and memory system configurations designed for disk storage should be reconsidered. In this paper, we analyze the effect of the page size on the memory system performances when fast storage is adopted. Based on this, we design a page size model that can guide an appropriate page size for given workloads in virtualized environments. Configuring different page sizes for various workloads is not an easy matter in traditional systems, but due to the widespread adoption of cloud systems, page sizing performed in our model is feasible for virtual machines, which are generated for executing specific workloads. Simulation experiments under various virtual machine scenarios show that the proposed model improves the memory access time significantly by configuring page sizes for given workloads.

Panic Disorder Symptom Care System Based on Context Awareness (상황인식 기반의 공황장애 증상 관리 시스템)

  • Choi, Dong-Oun;Huan, Meng;Kang, Yun-Jeong
    • Journal of Korea Entertainment Industry Association
    • /
    • v.13 no.4
    • /
    • pp.63-70
    • /
    • 2019
  • We extract the symptom of panic disorder from the context awareness environment. It extracts body context information through natural movement that exists in everyday life and uses a component of panic disorder. The ontology theory can be used to provide information on the degree of symptoms of panic disorder through inference process. For the components of panic disorder to the information processing based on ontology are defined as Classes. Panic disorder index is expressed through ontology modeling so that the condition of panic disorder can be known. The derivation of panic disorder component and panic disorder index will enable context awareness based information service for panic disorder. The context information is periodically synchronized with the context awareness on based device. Panic disorder can be used to improve the lifestyle of panic disorder.

Modeling Framework for Continuous Dynamic Systems Using Machine Learning of Hypothetical Model (가설적 모델의 기계학습을 이용한 연속시간 동적시스템 모델링 프레임워크)

  • Hae Sang Song;Tag Gon Kim
    • Journal of the Korea Society for Simulation
    • /
    • v.32 no.1
    • /
    • pp.13-21
    • /
    • 2023
  • This paper proposes a method of automatically generating a model through a machine learning technique by setting a hypothetical model in the form of a gray box or black box with unknown parameters, when the big data of the actual system is given. We implements the proposed framework and conducts experiments to find an appropriate model among various hypothesis models and compares the cost and fitness of them. As a result we find that the proposed framework works well with continuous systems that could be modeled with ordinary differential equation. This technique is expected to be used well for the purpose of automatically updating the consistency of the digital twin model or predicting the output for new inputs using recently generated big data.

Dynamic characteristics monitoring of wind turbine blades based on improved YOLOv5 deep learning model

  • W.H. Zhao;W.R. Li;M.H. Yang;N. Hong;Y.F. Du
    • Smart Structures and Systems
    • /
    • v.31 no.5
    • /
    • pp.469-483
    • /
    • 2023
  • The dynamic characteristics of wind turbine blades are usually monitored by contact sensors with the disadvantages of high cost, difficult installation, easy damage to the structure, and difficult signal transmission. In view of the above problems, based on computer vision technology and the improved YOLOv5 (You Only Look Once v5) deep learning model, a non-contact dynamic characteristic monitoring method for wind turbine blade is proposed. First, the original YOLOv5l model of the CSP (Cross Stage Partial) structure is improved by introducing the CSP2_2 structure, which reduce the number of residual components to better the network training speed. On this basis, combined with the Deep sort algorithm, the accuracy of structural displacement monitoring is mended. Secondly, for the disadvantage that the deep learning sample dataset is difficult to collect, the blender software is used to model the wind turbine structure with conditions, illuminations and other practical engineering similar environments changed. In addition, incorporated with the image expansion technology, a modeling-based dataset augmentation method is proposed. Finally, the feasibility of the proposed algorithm is verified by experiments followed by the analytical procedure about the influence of YOLOv5 models, lighting conditions and angles on the recognition results. The results show that the improved YOLOv5 deep learning model not only perform well compared with many other YOLOv5 models, but also has high accuracy in vibration monitoring in different environments. The method can accurately identify the dynamic characteristics of wind turbine blades, and therefore can provide a reference for evaluating the condition of wind turbine blades.

Artificial neural network model for predicting sex using dental and orthodontic measurements

  • Sandra Anic-Milosevic;Natasa Medancic;Martina Calusic-Sarac;Jelena Dumancic;Hrvoje Brkic
    • The korean journal of orthodontics
    • /
    • v.53 no.3
    • /
    • pp.194-204
    • /
    • 2023
  • Objective: To investigate sex-specific correlations between the dimensions of permanent canines and the anterior Bolton ratio and to construct a statistical model capable of identifying the sex of an unknown subject. Methods: Odontometric data were collected from 121 plaster study models derived from Caucasian orthodontic patients aged 12-17 years at the pretreatment stage by measuring the dimensions of the permanent canines and Bolton's anterior ratio. Sixteen variables were collected for each subject: 12 dimensions of the permanent canines, sex, age, anterior Bolton ratio, and Angle's classification. Data were analyzed using inferential statistics, principal component analysis, and artificial neural network modeling. Results: Sex-specific differences were identified in all odontometric variables, and an artificial neural network model was prepared that used odontometric variables for predicting the sex of the participants with an accuracy of > 80%. This model can be applied for forensic purposes, and its accuracy can be further improved by adding data collected from new subjects or adding new variables for existing subjects. The improvement in the accuracy of the model was demonstrated by an increase in the percentage of accurate predictions from 72.0-78.1% to 77.8-85.7% after the anterior Bolton ratio and age were added. Conclusions: The described artificial neural network model combines forensic dentistry and orthodontics to improve subject recognition by expanding the initial space of odontometric variables and adding orthodontic parameters.

Multi - Modal Interface Design for Non - Touch Gesture Based 3D Sculpting Task (비접촉식 제스처 기반 3D 조형 태스크를 위한 다중 모달리티 인터페이스 디자인 연구)

  • Son, Minji;Yoo, Seung Hun
    • Design Convergence Study
    • /
    • v.16 no.5
    • /
    • pp.177-190
    • /
    • 2017
  • This research aims to suggest a multimodal non-touch gesture interface design to improve the usability of 3D sculpting task. The task and procedure of design sculpting of users were analyzed across multiple circumstances from the physical sculpting to computer software. The optimal body posture, design process, work environment, gesture-task relationship, the combination of natural hand gesture and arm movement of designers were defined. The preliminary non-touch 3D S/W were also observed and natural gesture interaction, visual metaphor of UI and affordance for behavior guide were also designed. The prototype of gesture based 3D sculpting system were developed for validation of intuitiveness and learnability in comparison to the current S/W. The suggested gestures were proved with higher performance as a result in terms of understandability, memorability and error rate. Result of the research showed that the gesture interface design for productivity system should reflect the natural experience of users in previous work domain and provide appropriate visual - behavioral metaphor.

A Hybrid Semantic-Geometric Approach for Clutter-Resistant Floorplan Generation from Building Point Clouds

  • Kim, Seongyong;Yajima, Yosuke;Park, Jisoo;Chen, Jingdao;Cho, Yong K.
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.792-799
    • /
    • 2022
  • Building Information Modeling (BIM) technology is a key component of modern construction engineering and project management workflows. As-is BIM models that represent the spatial reality of a project site can offer crucial information to stakeholders for construction progress monitoring, error checking, and building maintenance purposes. Geometric methods for automatically converting raw scan data into BIM models (Scan-to-BIM) often fail to make use of higher-level semantic information in the data. Whereas, semantic segmentation methods only output labels at the point level without creating object level models that is necessary for BIM. To address these issues, this research proposes a hybrid semantic-geometric approach for clutter-resistant floorplan generation from laser-scanned building point clouds. The input point clouds are first pre-processed by normalizing the coordinate system and removing outliers. Then, a semantic segmentation network based on PointNet++ is used to label each point as ceiling, floor, wall, door, stair, and clutter. The clutter points are removed whereas the wall, door, and stair points are used for 2D floorplan generation. A region-growing segmentation algorithm paired with geometric reasoning rules is applied to group the points together into individual building elements. Finally, a 2-fold Random Sample Consensus (RANSAC) algorithm is applied to parameterize the building elements into 2D lines which are used to create the output floorplan. The proposed method is evaluated using the metrics of precision, recall, Intersection-over-Union (IOU), Betti error, and warping error.

  • PDF

Graphical display technology of internal impact in remote monitoring and simulation system (원격 모니터링 및 시뮬레이션 시스템의 내부 충격 그래픽 표시 기법)

  • Yoon, Ji-young;Lee, Hyo-jai;Woo, Deok-gun;Jang, Moon-su;Kim, Cheol-hwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.574-576
    • /
    • 2022
  • In this paper, we developed a technique to graphically display impact effects for remote monitoring or simulation systems. A remote monitoring or simulation system is being used to find a repair time or to prevent accidents while inspecting equipment or facilities in an industrial site in real time. These systems provide visual information to users so that they can analyze problem situations. The technique proposed in this paper is a method of modeling equipment and facilities using 3D graphics, and displaying the location of impact and damage occurring in the equipment inside using volume rendering. This technique has the advantage that the problem can be identified more accurately by displaying the impact animation by volume rendering at the location of the impact and damage inside the equipment. And it is expected that the problem situation can be identified more quickly through more intense visual effects.

  • PDF

3D Printing in Modular Construction: Opportunities and Challenges

  • Li, Mingkai;Li, Dezhi;Zhang, Jiansong;Cheng, Jack C.P.;Gan, Vincent J.L.
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.75-84
    • /
    • 2020
  • Modular construction is a construction method whereby prefabricated volumetric units are produced in a factory and are installed on site to form a building block. The construction productivity can be substantially improved by the manufacturing and assembly of standardized modular units. 3D printing is a computer-controlled fabrication method first adopted in the manufacturing industry and was utilized for the automated construction of small-scale houses in recent years. Implementing 3D printing in the fabrication of modular units brings huge benefits to modular construction, including increased customization, lower material waste, and reduced labor work. Such implementation also benefits the large-scale and wider adoption of 3D printing in engineering practice. However, a critical issue for 3D printed modules is the loading capacity, particularly in response to horizontal forces like wind load, which requires a deeper understanding of the building structure behavior and the design of load-bearing modules. Therefore, this paper presents the state-of-the-art literature concerning recent achievement in 3D printing for buildings, followed by discussion on the opportunities and challenges for examining 3D printing in modular construction. Promising 3D printing techniques are critically reviewed and discussed with regard to their advantages and limitations in construction. The appropriate structural form needs to be determined at the design stage, taking into consideration the overall building structural behavior, site environmental conditions (e.g., wind), and load-carrying capacity of the 3D printed modules. Detailed finite element modelling of the entire modular buildings needs to be conducted to verify the structural performance, considering the code-stipulated lateral drift, strength criteria, and other design requirements. Moreover, integration of building information modelling (BIM) method is beneficial for generating the material and geometric details of the 3D printed modules, which can then be utilized for the fabrication.

  • PDF

A Simulation Study on Transcranial Direct Current Stimulation Using MRI in Alzheimer's Disease Patients (알츠하이머병 환자의 MRI를 활용한 경두개 직류 전기 자극 시뮬레이션에 관한 연구)

  • Chae-Bin Song;Cheolki Lim;Jongseung Lee;Donghyeon Kim;Hyeon Seo
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.6
    • /
    • pp.377-383
    • /
    • 2023
  • Purpose: There is increasing attention to the application of transcranial direct current stimulation (tDCS) for enhancing cognitive functions in subjects to aging, mild cognitive impairment (MCI), and Alzheimer's disease (AD). Despite varying treatment outcomes in tDCS which depend on the amount of current reaching the brain, there is no general information on the impacts of anatomical features associated with AD on tDCS-induced electric field. Objective: The objective of this study is to examine how AD-related anatomical variation affects the tDCS-induced electric field using computational modeling. Methods: We collected 180 magnetic resonance images (MRI) of AD patients and healthy controls from a publicly available database (Alzheimer's Disease Neuroimaging Initiative; ADNI), and MRIs were divided into female-AD, male-AD, female-normal, and male-normal groups. For each group, segmented brain volumes (cerebrospinal fluid, gray matter, ventricle, rostral middle frontal (RMF), and hippocampus/amygdala complex) using MRI were measured, and tDCS-induced electric fields were simulated, targeting RMF. Results: For segmented brain volumes, significant sex differences were observed in the gray matter and RMF, and considerable disease differences were found in cerebrospinal fluid, ventricle, and hippocampus/amygdala complex. There were no differences in the tDCS-induced electric field among AD and normal groups; however, higher peak values of electric field were observed in the female group than the male group. Conclusions: Our findings demonstrated the presence of sex and disease differences in segmented brain volumes; however, this pattern differed in tDCS-induced electric field, resulting in significant sex differences only. Further studies, we will adjust the brain stimulation conditions to target the deep brain and examine the effects, because of significant differences in the ventricles and deep brain regions between AD and normal groups.