Acknowledgement
The work described in this paper was jointly supported by the National Science Foundation of China (Grant Nos. 52068049 and 51908266), the Science Fund for Distinguished Young Scholars of Gansu Province (No. 21JR7RA267), and Hongliu Outstanding Young Talents Program of Lanzhou University of Technology.
References
- Amenabar, I., Mendikute, A., Lopez-Arraiza, A., Lizaranzu, M. and Aurrekoetxea, J. (2011), "Comparison and analysis of nondestructive testing techniques suitable for delamination inspection in wind turbine blades", Compos. B. Eng., 42(5), 1298-1305. https://doi.org/10.1016/j.compositesb.2011.01.025
- Beganovic, N. and Soffker, D. (2016), "Structural health management utilization for lifetime prognosis and advanced control strategy deployment of wind turbines: An overview and outlook concerning actual methods, tools, and obtained results", Renew. Sustain. Energy Rev., 64, 68-83. https://doi.org/10.1016/j.rser.2016.05.083
- Dong, C.Z., Celik, O. and Catbas, F.N. (2019), "Marker-free monitoring of the grandstand structures and modal identification using computer vision methods", Struct. Health Monit., 18(5-6), 1491-1509. https://doi.org/10.1177/1475921718806895
- Dong, C.Z., Celik, O., Catbas, F.N., O'Brien, E.J. and Taylor, S. (2020), "Structural displacement monitoring using deep learning-based full field optical flow methods", Struct. Infrastruct. Eng., 16(1), 51-71. https://doi.org/10.1080/15732479.2019.1650078
- Du, Y., Zhou, S., Jing, X., Peng, Y., Wu, H. and Kwok, N. (2020), "Damage detection techniques for wind turbine blades: A review", Mech. Syst. Signal Process., 141, 106445. https://doi.org/10.1016/j.ymssp.2019.106445
- Ehrhardt, D.A., Allen, M.S., Yang, S. and Beberniss, T.J. (2017), "Full-field linear and nonlinear measurements using continuous-scan laser doppler vibrometry and high speed three-dimensional digital image correlation", Mech. Syst. Signal Process., 86, 82-97. https://doi.org/10.1016/j.ymssp.2015.12.003
- Felipe-Sese, L. and Diaz, F.A. (2018), "Damage methodology approach on a composite panel based on a combination of Fringe Projection and 2D Digital Image Correlation", Mech. Syst. Signal Process., 101, 467-479. https://doi.org/10.1016/j.ymssp.2017.09.002
- Feng, D. and Feng, M.Q. (2017), "Experimental validation of cost-effective vision-based structural health monitoring", Mech. Syst. Signal Process., 88, 199-211. https://doi.org/10.1016/j.ymssp.2016.11.021
- Feng, D., Feng, M.Q., Ozer, E. and Fukuda, Y. (2015), "A vision-based sensor for noncontact structural displacement measurement", Sensors, 15(7), 16557-16575. https://doi.org/10.3390/s150716557
- Hernandez-Estrada, E., Lastres-Danguillecourt, O., Robles-Ocampo, J.B., Lopez-Lopez, A., Sevilla-Camacho, P.Y., Perez-Sarinana, B.Y. and Dorrego-Portela, J.R. (2021), "Considerations for the structural analysis and design of wind turbine towers: A review", Renew. Sust. Energ. Rev., 137, 110447. https://doi.org/10.1016/j.rser.2020.110447
- Hoskere, V., Park, J.W., Yoon, H. and Spencer Jr, B.F. (2019), "Vision-based modal survey of civil infrastructure using unmanned aerial vehicles", J. Struct. Eng., 145(7), 04019062. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002321
- Hoskere, V., Narazaki, Y. and Spencer Jr, B.F. (2022), "Physics-based graphics models in 3D synthetic environments as autonomous vision-based inspection testbeds", Sensors, 22(2), 532. https://doi.org/10.3390/s22020532
- Jasinien, E., Raiutis, R., Voleiis, A., Vladiauskas, A., Mitchard, D. and Amos, M. (2009), "NDT of wind turbine blades using adapted ultrasonic and radiographic techniques", INSIGHT, 51(9), 477-483. https://doi.org/10.1016/j.ymssp.2019.106445
- Jia, W., Xu, S., Liang, Z., Zhao, Y., Min, H., Li, S. and Yu, Y. (2021), "Real-time automatic helmet detection of motorcyclists in urban traffic using improved YOLOv5 detector", IET Image Process, 15(14), 3623-3637. https://doi.org/10.1049/ipr2.12295
- Kalaitzakis, M., Kattil, S.R., Vitzilaios, N., Rizos, D. and Sutton, M. (2019), "Dynamic structural health monitoring using a DIC-enabled drone", Proceedings of 2019 International Conference on Unmanned Aircraft Systems (ICUAS), Atlanta, GA, USA, June.
- Kaewniam, P., Cao, M., Alkayem, N.F., Li, D. and Manoach, E. (2022), "Recent advances in damage detection of wind turbine blades: A state-of-the-art review", Renew. Sust. Energ. Rev., 167, 112723. https://doi.org/10.1016/j.rser.2022.112723
- Khadka, A., Fick, B., Afshar, A., Tavakoli, M. and Baqersad, J. (2020), "Non-contact vibration monitoring of rotating wind turbines using a semi-autonomous UAV", Mech. Syst. Signal Process., 138, 106446. https://doi.org/10.1016/j.ymssp.2019.106446
- Kuddus, M.A., Li, J., Hao, H., Li, C. and Bi, K. (2019), "Target-free vision-based technique for vibration measurements of structures subjected to out-of-plane movements", Eng. Struct., 190, 210-222. https://doi.org/10.1016/j.engstruct.2019.04.019
- Li, S., Guo, Y., Xu, Y. and Li, Z. (2019), "Real-time geometry identification of moving ships by computer vision techniques in bridge area", Smart Struct. Syst., Int. J., 23(4), 359-371. https://doi.org/10.12989/sss.2019.23.4.359
- Li, W., Zhao, W., Gu, J., Fan, B. and Du, Y. (2022), "Dynamic characteristics monitoring of large wind turbine blades based on target-free DSST vision algorithm and UAV", Remote Sens., 14(13), 3113. https://doi.org/10.3390/rs14133113
- Liang, X. (2019), "Image-based post-disaster inspection of reinforced concrete bridge systems using deep learning with Bayesian optimization", Comput.-Aided Civil Inf., 34(5), 415-430. https://doi.org/10.1111/mice.12425
- Lin, Z., Cevasco, D. and Collu, M. (2020), "A methodology to develop reduced-order models to support the operation and maintenance of offshore wind turbines", Appl. Energy, 259, 114228. https://doi.org/10.1016/j.apenergy.2019.114228
- Lydon, D., Taylor, S.E., Lydon, M., del Rincon, J.M. and Hester, D. (2019), "Development and testing of a composite system for bridge health monitoring utilising computer vision and deep learning", Smart Struct. Syst., Int. J., 24(6), 723-732. https://doi.org/10.12989/sss.2019.24.6.723
- Mao, Q.C., Sun, H.M., Liu, Y.B. and Jia, R.S. (2019), "Mini-YOLOv3: real-time object detector for embedded applications", IEEE Access, 7, 133529-133538. 10.1109/ACCESS.2019.2941547
- Narazaki, Y., Hoskere, V., Eick, B.A., Smith, M.D. and Spencer Jr., B.F. (2019), "Vision-based dense displacement and strain estimation of miter gates with the performance evaluation using physics-based graphics models", Smart Struct. Syst., Int. J., 24(6), 709-721. https://doi.org/10.12989/sss.2019.24.6.709
- Narazaki, Y., Hoskere, V., Yoshida, K., Spencer Jr., B.F. and Fujino, Y. (2021), "Synthetic environments for vision-based structural condition assessment of Japanese high-speed railway viaducts", Mech. Syst. Signal Process., 160, 107850. https://doi.org/10.1016/j.ymssp.2021.107850
- Onat, O. and Gul, M. (2018), "Application of artificial neural networks to the prediction of out-of-plane response of infill walls subjected to shake table", Smart Struct. Syst., Int. J., 21(4), 521-535. https://doi.org/10.12989/sss.2018.21.4.521
- Perry, B.J. and Guo, Y. (2021), "A portable three-component displacement measurement technique using an unmanned aerial vehicle (UAV) and computer vision: a proof of concept", Measurement, 176, 109222. https://doi.org/10.1016/j.measurement.2021.109222
- Shao, Y., Li, L., Li, J., An, S. and Hao, H. (2021), "Computer vision based target-free 3D vibration displacement measurement of structures", Eng. Struct., 246, 113040. https://doi.org/10.1016/j.engstruct.2021.113040
- Song, Q., Wu, J., Wang, H., An, Y. and Tang, G. (2022), "Computer vision-based illumination-robust and multi-point simultaneous structural displacement measuring method", Mech. Syst. Signal Process., 170, 108822. https://doi.org/10.1016/j.ymssp.2022.108822
- Sony, S., Laventure, S. and Sadhu, A. (2019), "A literature review of next-generation smart sensing technology in structural health monitoring", Struct. Control Health Monit., 26(3), e2321. https://doi.org/10.1002/stc.2321
- Spencer Jr, B.F., Hoskere, V. and Narazaki, Y. (2019), "Advances in computer vision-based civil infrastructure inspection and monitoring", Eng., 5(2), 199-222. https://doi.org/10.1016/j.eng.2018.11.030
- Sun, S., Wang, T., Yang, H. and Chu, F. (2022), "Damage identification of wind turbine blades using an adaptive method for compressive beamforming based on the generalized minimax-concave penalty function", Renew. Energ., 181, 59-70. https://doi.org/10.1016/j.renene.2021.09.024
- Tian, Y., Zhang, J. and Yu, S. (2019a), "Vision-based structural scaling factor and flexibility identification through mobile impact testing", Mech. Syst. Signal Process., 122, 387-402. https://doi.org/10.1016/j.ymssp.2018.12.029
- Tian, Y., Zhang, J. and Yu, S. (2019b), "Rapid impact testing and system identification of footbridges using particle image velocimetry", Comput.-Aided Civil Inf., 34(2), 130-145. https://doi.org/10.1111/mice.12390
- Wu, D., Lv, S., Jiang, M. and Song, H. (2020), "Using channel pruning-based YOLO v4 deep learning algorithm for the real-time and accurate detection of apple flowers in natural environments", Comput. Electron. Agric., 178, 105742. https://doi.org/10.1016/j.compag.2020.105742
- Xu, D., Wen, C. and Liu, J. (2019), "Wind turbine blade surface inspection based on deep learning and UAV-taken images", J. Renew. Sustain. Energy, 11(5), 053305. https://doi.org/10.1063/1.5113532
- Xu, D., Liu, P.F. and Chen, Z.P. (2021), "Damage mode identification and singular signal detection of composite wind turbine blade using acoustic emission", Compos. Struct., 255, 112954. https://doi.org/10.1016/j.compstruct.2020.112954
- Ye, X.W., Dong, C.Z. and Liu, T. (2016), "Image-based structural dynamic displacement measurement using different multi-object tracking algorithms", Smart Struct. Syst., Int. J., 17(6), 935-956. https://doi.org/10.12989/sss.2016.17.6.935
- Ye, X.W., Jin, T. and Yun, C.B. (2019), "A review on deep learning-based structural health monitoring of civil infrastructures", Smart Struct. Syst., Int. J., 24(5), 567-585. 10.12989/sss.2019.24.5.567
- Yu, Y., Cao, H., Yan, X., Wang, T. and Ge, S.S. (2020), "Defect identification of wind turbine blades based on defect semantic features with transfer feature extractor", Neurocomputing, 376, 1-9. https://doi.org/10.1016/j.neucom.2019.09.071
- Zhang, Z. (2000), "A flexible new technique for camera calibration", IEEE Trans. Pattern Anal. Machine Intell., 22(11), 1330-1334. DOI: 10.1109/34.888718
- Zhao, X., Liu, H., Yu, Y., Zhu, Q., Hu, W., Li, M. and Ou, J. (2016), "Displacement monitoring technique using a smartphone based on the laser projection-sensing method", Sens. Actuator A Phys., 246, 35-47. https://doi.org/10.1016/j.sna.2016.05.012
- Zhou, Y., Zhou, S., Hao, G. and Zhang, J. (2021), "Bridge influence line identification based on big data and interval analysis with affine arithmetic", Measurement, 183, 109807. https://doi.org/10.1016/j.measurement.2021.109807
- Zhu, L., Geng, X., Li, Z. and Liu, C. (2021), "Improving yolov5 with attention mechanism for detecting boulders from planetary images", Remote Sens., 13(18), 3776. https://doi.org/10.3390/rs13183776