Kim, Jung-Hoon;Lee, Hoon-Jung;Kim, Sang-Jin;Oh, Hee-Kuck
The KIPS Transactions:PartC
/
v.18C
no.3
/
pp.135-142
/
2011
Recently, the strategy for N-screen service is in the spotlight along with the consumer's need to use contents regardless of time and place due to the rapid development of communication technology, which is meshing with the desire of service providers seeking a new business model. N-screen, as a screen-extension-concept service which enables consumers to continuously share and use contents in various equipments such as TV, computer and portable terminals, is an advanced type of 3-screen service strategy initially proposed by AT&T, an American telecommunication company. In the N-screen service for pay-contents, in order to support continuous screen changes to and from various equipments, temporary watching right should be given to the equipment intended for screen change. However, it is impossible to give the temporary watching right in the present broadcasting environment, adopting an access-control system. In this paper, the access-control technology being used for pay-contents in the present broadcasting environment and the reason for not being able to give temporary watching right, will be examined. After the examination, the solution for delegation of watching right by using an additional key on the basis of currently used access-control technology, will be proposed.
This study was conducted to find ways to control environment with the difference between body temperature and background temperature based on swine activity, and to apply to the environment control system of swine barns based on the findings. Following are the results. 1. Swine activity related to background temperature was achieved as color images and swine activity status was categorized into cold, comfortable, and hot periods with visualization system (thermal image system). 2. Thermal image system consisted of an infrared CCD camera, an image processing board - DIF (TH3100), an main computer (400Hz, 128M, 586 Pentium model) with C++ program installed. 3. Thermal image system categorizing temperatures into cold, comfortable, and hot was applicable to the environment control system of swine barns 4. Feed intake was higher in cold temperature, and finishing weight and weight gain per day in cold temperature were lower than others (p<0.05).
Journal of the Korea Academia-Industrial cooperation Society
/
v.18
no.4
/
pp.669-676
/
2017
Recently, due to the importance of information security, security vulnerability analysis and various information protection technologies and security systems are being introduced as a countermeasure against cyber-attacks in new as well as existing buildings, and information security studies on high-rise buildings are also being conducted. However, security system introduction and research are generally performed from the viewpoint of general IT systems and security policies, so there is little consideration of the infrastructure of the building. In particular, the BAS or building infrastructure, is a closed system, unlike typical IT systems, but has unique structural features that accommodate open functions. Insufficient understanding of these system structures and functions when establishing a building security policy makes the information security policies for the BAS vulnerable and increases the likelihood that all of the components of the building will be exposed to malicious cyber-attacks via the BAS. In this paper, we propose an architecture reference model that integrates three different levels of BAS structure (from?) different vendors. The architectures derived from this study and the security characteristics and vulnerabilities at each level will contribute to the establishment of security policies that reflect the characteristics of the BAS and the improvement of the safety management of buildings.
As a mathematical technique with which we can find the minimum duration time needed to fire all the transitions at least once and coming back to the initial marking in a timed net, the minimum cycle time method has been widely used in computer system analysis. A timed net is a modified version of a Petri net where a transition is associated with a delay time. A delay time used in a timed net is a constant even though the duration time associated with an event in the world is a stochastic number in general. In the consequence, the result of minimum cycle time analysis is not realistic. Therefore, we propose ‘Stochastic Timed Net' where a transition can be associated with a stochastic number and introduce a minimum cycle time analysis method for ‘Stochastic Timed Net’ As an example of the application of ‘Stochastic Timed Net’, we introduce a ‘Stochastic Timed Net' model of a Location Based Service Providing Multimedia System and the result of minimum cycle time analysis of it. Whereas the typical form of the result of the existing minimum cycle time analysis is 'It takes at least 10 time units', the typical form of the result of minimum cycle time analysis of a ‘Stochastic Timed Net' is in the probability form such as "The probability of the events in which it finishes its job within 10 time units is 85%."
본 논문에서 제안하는 시나리오기반 검증기법의 목적은 UML로 작성된 객체지향 분석모델의 완전성 및 일관성을 진단하는 것이다. 검증기법의 전체 절차는 요구분석을 위한 Use Case 모델링 과정에서 생성되는 Use Case 시나리오와 UML 분석모델로부터 역공학적 방법으로 도출된 객체행위 시나리오와의 상호참조과정 및 시나리오 정보트리 추적과정을 이용하여 단계적으로 수행된다. 본 검증절차를 위하여 우선, UML로 작성된 객체지향 분석모델들은 우선 정형명세언어를 사용하여 Use Case 정형명세로 변환하다. 그 다음에, Use Case 정형명세로부터 해당 Use Case 내의 객체의 정적구조를 표현하는 시나리오 정보트리를 구축하고, Use Case 정형명세 내에 포함되어 있는 객체 동적행위 정보인 메시지 순차에 따라 개별 시나리오흐름을 시나리오 정보트리에 표현한다. 마지막으로 시나리오 정보트리 추적과 시나리오 정보 테이블 참조과정을 중심으로 완전성 및 일관성 검증작업을 수행한다. 즉, 검증하고자 하는 해당 Use Case의 시나리오 정보트리를 이용한 시나리오 추적과정을 통해 생성되는 객체행위 시나리오와 요구분석 과정에서 도출되는 Use Case 시나리오와의 일치여부를 조사하여 분석모델과 사용자 요구사양과의 완전성을 검사한다. 그리고, 시나리오 추적과정을 통해 수집되는 시나리오 관련종보들을 가지고 시나리오 정보 테이블을 작성한 후, 분석과정에서 작성된 클래스 관련정보들의 시나리오 포함 여부를 확인하여 분석모델의 일관성을 검사한다. 한편, 본 논문에서 제안하는 검증기법의 효용성을 증명하기 위해 대학의 수강등록시스템 개발을 위해 UML을 이용해 작성된 분석모델을 특정한 사례로써 적용하여 보았다. 프로세싱 오버헤드 및 메모리와 대역폭 요구량 측면에서 MARS 모델보다 유리함을 알 수 있었다.과는 본 논문에서 제안된 프리페칭 기법이 효율적으로 peak bandwidth를 줄일 수 있다는 것을 나타낸다.ore complicate such a prediction. Although these overestimation sources have been attacked in many existing analysis techniques, we cannot find in the literature any description about questions like which one is most important. Thus, in this paper, we quantitatively analyze the impacts of overestimation sources on the accuracy of the worst case timing analysis. Using the results, we can identify dominant overestimation sources that should be analyzed more accurately to get tighter WCET estimations. To make our method independent of any existing analysis techniques, we use simulation based methodology. We have implemented a MIPS R3000 simulator equipped with several switches, each of which determines the accuracy level of the
Background: Breast cancer is a worldwide public health concern and is the most prevalent type of cancer in women in the United States. This study concerned the best fit of statistical probability models on the basis of survival times for nine state cancer registries: California, Connecticut, Georgia, Hawaii, Iowa, Michigan, New Mexico, Utah, and Washington. Materials and Methods: A probability random sampling method was applied to select and extract records of 2,000 breast cancer patients from the Surveillance Epidemiology and End Results (SEER) database for each of the nine state cancer registries used in this study. EasyFit software was utilized to identify the best probability models by using goodness of fit tests, and to estimate parameters for various statistical probability distributions that fit survival data. Results: Statistical analysis for the summary of statistics is reported for each of the states for the years 1973 to 2012. Kolmogorov-Smirnov, Anderson-Darling, and Chi-squared goodness of fit test values were used for survival data, the highest values of goodness of fit statistics being considered indicative of the best fit survival model for each state. Conclusions: It was found that California, Connecticut, Georgia, Iowa, New Mexico, and Washington followed the Burr probability distribution, while the Dagum probability distribution gave the best fit for Michigan and Utah, and Hawaii followed the Gamma probability distribution. These findings highlight differences between states through selected sociodemographic variables and also demonstrate probability modeling differences in breast cancer survival times. The results of this study can be used to guide healthcare providers and researchers for further investigations into social and environmental factors in order to reduce the occurrence of and mortality due to breast cancer.
Journal of the Korea Institute of Information and Communication Engineering
/
v.12
no.4
/
pp.772-780
/
2008
K-means is one of the simplest unsupervised learning algorithms that solve the clustering problem. However K-means suffers the basic shortcoming: the number of clusters k has to be known in advance. In this paper, we propose extensions of X-means, which can estimate the number of clusters using Bayesian information criterion(BIC). We introduce two different versions of algorithm: modified X-means(MX-means) and generalized X-means(GX-means), which employ one full covariance matrix for one cluster and so can estimate the number of clusters efficiently without severe over-fitting which X-means suffers due to its spherical cluster assumption. The algorithms start with one cluster and try to split a cluster iteratively to maximize the BIC score. The former uses K-means algorithm to find a set of optimal clusters with current k, which makes it simple and fast. However it generates wrongly estimated centers when the clusters are overlapped. The latter uses EM algorithm to estimate the parameters and generates more stable clusters even when the clusters are overlapped. Experiments with synthetic data show that the purposed methods can provide a robust estimate of the number of clusters and cluster parameters compared to other existing top-down algorithms.
Korean Journal of Construction Engineering and Management
/
v.20
no.6
/
pp.107-116
/
2019
Korean construction engineering firms want to pave the way for expansion of overseas markets through the World Bank's Official Development Assistance (ODA) projects as a way to improve their overseas project performance. However, since the World Bank project competes with global companies for limited projects, building partnerships with suitable business partners is essential to gain an upper hand in bidding competition and meet the institutional conditions of the recipient country. In this regard, many network studies have been conducted in the past through Social Network Analysis (SNA), but few have been analyzed based on the process of changes in the network. So, This study collected winning data from the three Southeast Asian countries that ended after the World Bank's ODA project performed smoothly, and established a learning-based link prediction model that reflected the dynamic nature of the network. As a result, the 11 main variables acting on building a cooperative relationship between winning companies were derived and the effect of each variables on the probability value of cooperation between individual links was identified.
In recent years, Convolutional Neural Networks (CNNs) have achieved outstanding performance in the fields of computer vision such as image classification, object detection, visual quality enhancement, etc. However, as huge amount of computation and memory are required in CNN models, there is a limitation in the application of CNN to low-power environments such as mobile or IoT devices. Therefore, the need for neural network compression to reduce the model size while keeping the task performance as much as possible has been emerging. In this paper, we propose a method to compress CNN models by combining matrix decomposition methods of LR (Low-Rank) approximation and CP (Canonical Polyadic) decomposition. Unlike conventional methods that apply one matrix decomposition method to CNN models, we selectively apply two decomposition methods depending on the layer types of CNN to enhance the compression performance. To evaluate the performance of the proposed method, we use the models for image classification such as VGG-16, RestNet50 and MobileNetV2 models. The experimental results show that the proposed method gives improved classification performance at the same range of 1.5 to 12.1 times compression ratio than the existing method that applies only the LR approximation.
The soil creep, primarily caused by earthquakes and torrential rainfall events, has widely occurred across the country. The Korea Forest Service attempted to quantify the soil creep susceptible areas using a discriminant value table to prevent or mitigate casualties and/or property damages in advance. With the advent of advanced computer technologies, machine learning-based classification models have been employed for managing mountainous disasters, such as landslides and debris flows. This study aims to quantify the soil creep susceptibility using several classifiers, namely the k-Nearest Neighbor (k-NN), Naive Bayes (NB), Random Forest (RF), and Support Vector Machine (SVM) models. To develop the classification models, we downscaled 292 data from 4,618 field survey data. About 70% of the selected data were used for training, with the remaining 30% used for model testing. The developed models have the classification accuracy of 0.727 for k-NN, 0.750 for NB, 0.807 for RF, and 0.750 for SVM against test datasets representing 30% of the total data. Furthermore, we estimated Cohen's Kappa index as 0.534, 0.580, 0.673, and 0.585, with AUC values of 0.872, 0.912, 0.943, and 0.834, respectively. The machine learning-based classifications for soil creep susceptibility were RF, NB, SVM, and k-NN in that order. Our findings indicate that the machine learning classifiers can provide valuable information in establishing and implementing natural disaster management plans in mountainous areas.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.