• 제목/요약/키워드: Computational structural dynamics

검색결과 352건 처리시간 0.028초

CFD에 의한 사각단면의 플러터계수 산출 (Evaluation of Rectangular Section Flutter Derivatives by CFD)

  • 민원;이용재
    • 한국강구조학회 논문집
    • /
    • 제15권6호통권67호
    • /
    • pp.693-700
    • /
    • 2003
  • CFD를 이용하여 풍하중을 받는 구조부재의 Indicial 함수를 구하고 이로부터 플러터 계수를 얻는 방법을 제안한다. 이를 위해 유한요소법을 이용한 CFD 프로그램을 개발하고 이것을 사용하여 순간적 영각 변화에 따른 공기력계수의 시간적 변화, 즉 Indicial 함수를 구한다. 이 함수를 Fourier적분하여 플러터 계수를 구한다. 이 방법에서는 유체 속에서 진동하는 물체를 직접 시뮬레이션 하는 대신에 일정한 영각을 갖는 고정된 구조물의 수직력 및 회전력의 시간적 변화만을 구하면 된다. 이 방법의 타당성을 검증하기 위해 단면비가 다른 2개의 직사각 단면에 대해 본 연구에서 개발한 프로그램을 사용하여 플러터 계수를 구하고, 또 풍동실험을 실시하여 같은 단면에 대한 플러터 계수를 구하여 서로 비교하였다. 본 연구결과는 교량의 예비설계 단계에서 효과적으로 사용할 수 있을 것이다.

Aerodynamic performance of a novel wind barrier for train-bridge system

  • He, Xuhui;Shi, Kang;Wu, Teng;Zou, Yunfeng;Wang, Hanfeng;Qin, Hongxi
    • Wind and Structures
    • /
    • 제23권3호
    • /
    • pp.171-189
    • /
    • 2016
  • An adjustable, louver-type wind barrier was introduced in this study for improving the running safety and ride comfort of train on the bridge under the undesirable wind environment. The aerodynamic characteristics of both train and bridge due to this novel wind barrier was systematically investigated based on the wind tunnel tests. It is suggested that rotation angles of the adjustable blade of the louver-type wind barrier should be controlled within $90^{\circ}$ to achieve an effective solution in terms of the overall aerodynamic performance of the train. Compared to the traditional grid-type wind barrier, the louver-type wind barrier generally presents better aerodynamic performance. Specifically, the larger decrease of the lift force and overturn moment of the train and the smaller increase of the drag force and torsional moment of the bridge resulting from the louver-type wind barrier were highlighted. Finally, the computational fluid dynamics (CFD) technique was applied to explore the underlying mechanism of aerodynamic control using the proposed wind barrier.

초 연자성 박막에서의 동적 자화 거동 (Dynamic Responses in Ultra-Soft Magnetic Thin Films)

  • 정인섭
    • 한국자기학회지
    • /
    • 제4권1호
    • /
    • pp.1-6
    • /
    • 1994
  • 본 연구에서는 초 연자성(ultra-soft magnetic) 비정질 박막에서 관찰되는 감쇄가 큰(overdamped) 고주파 자기특성의 원인을 이해함으로써 자기 스핀의 동적 자화거동을 확인하고자한다. 고주파에서의 자화율(susceptibility) 특성곡선에 대한 실험결과와 Gilbert의 운동방정식으로 부터의 계산 결과를 비교하여 초 연자성 박막의 겨우 $\alpha=20$ 정도의 큰 감쇄상수와 무시할 정도로 작은 $D_{x}{\approx}D_{y}{\approx}D_{z}{\approx}0$의 반자장 계수를 구하였다. 이 결과로 부터 불균일 박막의 자화율 특성곡선과 자기 스핀의 동적 자화거동을 설 명하기 위해 vortex 형상의 자화분포를 제안하였다. Vortex형 자화분포는 초 연자성 박막 내의 미세한 자성입자들에서의 안정된 스핀 분포로 형성되며, vortex의 불균일한 스핀운동은 스핀파로 부터의 에너지와 박막내 결함구조와의 상호작용에 의해 큰 감쇄를 갖는 것으로 설명되었다.

  • PDF

Simulation of oxygen mass transfer in fuel assemblies under flowing lead-bismuth eutectic

  • Feng, Wenpei;Zhang, Xue;Chen, Hongli
    • Nuclear Engineering and Technology
    • /
    • 제52권5호
    • /
    • pp.908-917
    • /
    • 2020
  • Corrosion of structural materials presents a critical challenge in the use of lead-bismuth eutectic (LBE) as a nuclear coolant in an accelerator-driven system. By forming a protective layer on the steel surfaces, corrosion of steels in LBE cooled reactors can be mitigated. The amount of oxygen concentration required to create a continuous and stable oxide layer on steel surfaces is related to the oxidation process. So far, there is no oxidation experiment in fuel assemblies (FA), let alone specific oxidation detail information. This information can be, however, obtained by numerical simulation. In the present study, a new coupling method is developed to implement a coupling between the oxygen mass transfer model and the commercial computational fluid dynamics (CFD) software ANSYS-CFX. The coupling approach is verified. Using the coupling tool, we study the oxidation process of the FA and investigate the effects of different inlet parameters, such as temperature, flow rate on the mass transfer process.

Numerical and analytical predictions of nuclear steam generator secondary side flow field during blowdown due to a feedwater line break

  • Jo, Jong Chull;Jeong, Jae-Jun;Moody, Frederick J.
    • Nuclear Engineering and Technology
    • /
    • 제53권3호
    • /
    • pp.1029-1040
    • /
    • 2021
  • For the structural integrity evaluation of pressurized water reactor (PWR) steam generator (SG) tubes subjected to transient hydraulic loading, determination of the tube-to-tube gap velocity and static pressure distributions along the tubes is prerequisite. This paper addresses both computational fluid dynamics (CFD) and analytical approaches for predicting the tube-to-tube gap velocity and static pressure distributions during blowdown following a feedwater line break (FWLB) accident at a PWR SG. First of all, a comparative study on CFD calculations of the transient velocity and pressure distributions in the SG secondary sides for two different models having 30 or no tubes is performed. The result shows that the velocities of sub-cooled water flowing between any adjacent two tubes of a tubed SG model during blowdown can be roughly estimated by applying the specified SG secondary side porosity to those of the no-tubed SG model. Secondly, simplified analytical approximate solutions for the steady two-dimensional SG secondary flow velocity and pressure distributions under a given discharge flowrate are derived using a line sink model. The simplified analytical solutions are validated by comparing them to the CFD calculations.

Comparison of smartphone accelerometer applications for structural vibration monitoring

  • Cahill, Paul;Quirk, Lucy;Dewan, Priyanshu;Pakrashi, Vikram
    • Advances in Computational Design
    • /
    • 제4권1호
    • /
    • pp.1-13
    • /
    • 2019
  • Recent generations of smartphones offer accelerometer sensors as a standard feature. While this has led to the development of a number of related applications (apps), there has been no study on their comparative or individual performance against a benchmark. This paper investigates the comparative performance of a number of smartphone accelerometer apps amongst themselves and to a calibrated benchmark accelerometer. A total of 12 apps were selected for testing out of 90 following an initial review. The selected apps were subjected to sinusoidal vibration testing of varying frequency and the response of each compared against the calibrated baseline accelerometer. The performance of apps was quantified using analysis of variance (ANOVA) and test of significance was carried out. The apps were then compared for a realistic dynamic scenario of measuring the acceleration response of a bridge due to the passage of a French Train $\grave{a}$ Grande Vitesse (TGV) in a laboratory environment.

Wind loads and wind-resistant behaviour of large cylindrical tanks in square-arrangement group. Part 2: CFD simulation and finite element analysis

  • Liu, Qing;Zhao, Yang;Cai, Shuqi;Dong, Shilin
    • Wind and Structures
    • /
    • 제31권6호
    • /
    • pp.495-508
    • /
    • 2020
  • To investigate the structural behaviour of grouped tanks under wind loads, 2 problems need to be figured out, wind pressures on tank shells and critical loads of the shell under these pressure distribution patterns. Following the wind tunnel tests described in the companion paper, this paper firstly seeks to obtain wind loads on the external wall in a squarely-arranged cylindrical tank group by numerical simulation, considering various layouts. The outcomes demonstrate that the numerical method can provide similar results on wind pressures and better insights on grouping effects through extracted streamlines. Then, geometrically nonlinear analyses are performed using several selected potentially unfavourable wind pressure distributions. It is found that the critical load is controlled by limit point buckling when the tank is empty while excessive deformations when the tank is full. In particular, significant reductions of wind resistance are found on grouped full tanks compared to the isolated tank, considering both serviceability and ultimate limit state, which should receive special attention if the tank is expected to resist severe wind loads with the increase of liquid level.

M Protein from Dengue virus oligomerizes to pentameric channel protein: in silico analysis study

  • Ayesha Zeba;Kanagaraj Sekar;Anjali Ganjiwale
    • Genomics & Informatics
    • /
    • 제21권3호
    • /
    • pp.41.1-41.11
    • /
    • 2023
  • The Dengue virus M protein is a 75 amino acid polypeptide with two helical transmembranes (TM). The TM domain oligomerizes to form an ion channel, facilitating viral release from the host cells. The M protein has a critical role in the virus entry and life cycle, making it a potent drug target. The oligomerization of the monomeric protein was studied using ab initio modeling and molecular dynamics simulation in an implicit membrane environment. The representative structures obtained showed pentamer as the most stable oligomeric state, resembling an ion channel. Glutamic acid, threonine, serine, tryptophan, alanine, isoleucine form the pore-lining residues of the pentameric channel, conferring an overall negative charge to the channel with approximate length of 51.9 Å. Residue interaction analysis for M protein shows that Ala94, Leu95, Ser112, Glu124, and Phe155 are the central hub residues representing the physicochemical interactions between domains. The virtual screening with 165 different ion channel inhibitors from the ion channel library shows monovalent ion channel blockers, namely lumacaftor, glipizide, gliquidone, glisoxepide, and azelnidipine to be the inhibitors with high docking scores. Understanding the three-dimensional structure of M protein will help design therapeutics and vaccines for Dengue infection.

FAST, GH Bladed 및 CFD기법을 이용한 5MW 해상풍력터빈 시스템 설계하중조건 해석 및 비교 (Design Load Case Analysis and Comparison for a 5MW Offwhore Wind Turbine Using FAST, GH Bladed and CFD Method)

  • 김기하;김동현;곽영섭;김수현
    • 한국유체기계학회 논문집
    • /
    • 제18권2호
    • /
    • pp.14-21
    • /
    • 2015
  • Design lifetime of a wind turbine is required to be at least 20 years. The most important step to ensure the deign is to evaluate the loads on the wind turbine as accurately as possible. In this study, extreme design load of a offshore wind turbine using Garrad Hassan (GH) Bladed and National Renewable Energy Laboratory (NREL) FAST codes are calculated considering structural dynamic loads. These wind turbine aeroelastic analysis codes are high efficiency for the rapid numerical analysis scheme. But, these codes are mainly based on the mathematical and semi-empirical theories such as unsteady blade element momentum (UBEM) theory, generalized dynamic wake (GDW), dynamic inflow model, dynamic stall model, and tower influence model. Thus, advanced CFD-dynamic coupling method is also applied to conduct cross verification with FAST and GH Bladed codes. If the unsteady characteristics of wind condition are strong, such as extreme design wind condition, it is possible to occur the error in analysis results. The NREL 5 MW offshore wind turbine model as a benchmark case is practically considered for the comparison of calculated designed loads. Computational analyses for typical design load conditions such as normal turbulence model (NTM), normal wind profile (NWP), extreme operation gust (EOG), and extreme direction change (EDC) have been conducted and those results are quantitatively compared with each other. It is importantly shown that there are somewhat differences as maximum amount of 18% among numerical tools depending on the design load cases.

Topology optimization of bracing systems in buildings considering the effects of the wind

  • Paulo U. Silva;Rayanne E.L. Pereira;Gustavo Bono
    • Structural Engineering and Mechanics
    • /
    • 제86권4호
    • /
    • pp.473-486
    • /
    • 2023
  • Nowadays, urban centers are increasingly vertical, making architects and engineers look for more efficient tools to analyze the effects of wind on tall buildings. Topology optimization can be used as an efficient tool for the design of bracing systems. Therefore, this work obtained the wind loads that act in the CAARC building, following the Brazilian standard NBR 6123/1988 and using Computational Fluid Dynamics. Four loading situations were considered, using the SIMP and BESO methods to optimize two-dimensional structures. A comparison between the SIMP and BESO methods is presented, showing the differences in the geometry of the solution found by both methods, the percentage variation in the objective function values and the dimensionless processing time. The solutions obtained through the loads obtained by the Brazilian standard are also compared with the numerical solutions obtained by CFD. The results show that the BESO method presented more rigid structures compared to the SIMP method. The bracing structures obtained with the SIMP method always present similar patterns in the distribution and quantity of bars, in contrast to the BESO method where no characteristic topology pattern was observed. It was concluded that even though the structures obtained by the BESO method presented greater stiffness, the SIMP method was less susceptible to the methodology used for the determination of wind loads. Additionally, it was evident the great potential that the combination topology optimization and computational wind engineering have in the design of bracing systems of high functional and aesthetic standards.