• 제목/요약/키워드: Computational Vibration Analysis

검색결과 568건 처리시간 0.022초

타워강성 효과를 고려한 소형 수직축 풍력발전기 운전 진동실험 및 해석 (Operational Vibration Experiment and Analysis of a Small Vertical-Axis Wind Turbine Considering the Effect of Tower Stiffness)

  • 추헌호;심재박;류경중;김동현;김봉영
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 추계학술대회 논문집
    • /
    • pp.602-606
    • /
    • 2011
  • In this study, operational vibration experiment and analysis have been conducted for the 4-blade small vertical-axis wind turbine (VAWT) including the effect of tower elastic behavior. Computational structural dynamics analysis method is applied to obtain Campbell diagram for the VAWT with elastic tower. An open type wind-tunnel is used to change and keep the wind velocity during the ground test. Equivalent reduced elastic tower is supported to the VAWT so that the elastic stiffness effect of the tower can be reflected to the present vibration experiment. Various excitation sources with aerodynamic forces are considered and the dominant operating vibration phenomena are physically investigated in detail.

  • PDF

웹기반 회전식 압축기 진동해석 시스템 개발 (Development of a Web-based Vibration Analysis System for a Rotary Compressor)

  • 한형석
    • 한국CDE학회논문집
    • /
    • 제8권3호
    • /
    • pp.175-183
    • /
    • 2003
  • This paper introduces a Web-based vibration analysis system for rotary-type refrigerator compressors. Concern for vibration reduction in compressors has been growing for many years. What is important in vibration reduction is to easily predict the vibration without using a physical compressor. The dynamic model of the compressor is represented as a multi-body dynamic system. Solving the dynamic model is run on a high-performance server. The interfaces of the system are accessible via Web browsers, such as Netscape or Explorer. Anyone who wants to analyze the vibration of the rotary compressor or share the results data can access the system over the Internet regardless of their OS, platform, or location.

라멘조 건축구조물의 수직진동 전달특성에 관한 실험연구 (An Experimental Study on the Vertical Vibration Transfer according to Rahmen Building Structures due to Train Loads)

  • 전호민
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 가을 학술발표회 논문집
    • /
    • pp.469-475
    • /
    • 2004
  • The vibration on building structures due to exciting vibration forces has been studied only for the vibration level on existing buildings. Recently, several researches have been performed on the prediction of vertical vibration on structures by using an analytical method. However, these studies have been focused on mainly the vibration analysis through analytical modeling of structures. This study aims to investigate the dynamic characteristics of vertical vibration transfer from lower stories to upper ones on the Rahmen building structures due to traffic loads. In order to examine the characteristics of vertical vibration transfer, the mode analysis and the impact experiment were conducted several times on one building structures. The results of this study suggest that the characteristics of vertical vibration transfer are different in terms of the type of trains.

  • PDF

베어링 지지 효과를 고려한 3차원 로터동역학 해석 (Three-dimensional Rotordynamic Analysis Considering Bearing Support Effects)

  • 박효근;김동만;김유성;김명국;전승배;김동현
    • 한국소음진동공학회논문집
    • /
    • 제17권2호
    • /
    • pp.105-113
    • /
    • 2007
  • In this study, three-dimensional rotordynamic analyses have been conducted using equivalent beam, hybrid and full three-dimensional models. The present computational method is based on the general finite element method with rotating gyroscopic effects of the rotor system. General purpose commercial finite element code, SAMCEF which includes practical rotordynamics module with various types of rotor analysis tools and bearing elements is applied. For the purpose of numerical verification, comparison study for a benchmark rotor model with support bearings is performed first. Detailed finite element models based on three different modeling concepts are constructed and then computational analyses are conducted for the realistic and complex three-dimensional rotor system. The results for rotor stability and mass unbalance response are presented and compared with the experimental vibration test data conducted herein.

부분구조모델을 이용한 건축물의 국부진동해석에서의 오차원인 분석 (Error Estimate of Local Vibration for Building Structures Using Substructure Models)

  • 안상경;이현수;이동근
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.545-552
    • /
    • 2001
  • Analysis of a structure for vertical vibration requires a lot of computational efforts because large number of degrees of freedom are generally involved in the dynamic response. Especially, when a structure is loaded with local vibration source, it may not be economical to model the whole structure to obtain the responses of specific members located near or far from the sources. In this study, substructure models have been used for analysis of local vibration An analysis of local vibration is performed for the case that the loaded point and the response point are located on the same floor. Other analysis is performed for the case that the loaded point and the response point are located on the different floor. In this case, if only the floors on which loaded and response points are located are modeled, response of substructure model is very different from that of full model. So, there should be a consideration that degrees of freedom of floors in addition to those of loaded and response floors are included to improve results of dynamic analysis. In this study, floors between loaded floor and response floor were modeled so that modeshapes which affect the response are presented well.

  • PDF

스테이터-로터 상호간섭 및 점성효과를 고려한 케스케이드의 유체유발 진동해석 (Flow-induced Vibration Analysis for Cascades with Stator-rotor Interaction and Viscosity Effect)

  • 오세원;박웅;김동현
    • 한국소음진동공학회논문집
    • /
    • 제16권10호
    • /
    • pp.1082-1089
    • /
    • 2006
  • In this study, advanced computational analysis system has been developed in order to investigate flow-induced vibration(FIV) phenomenon for general stator-rotor cascade configurations. Relative movement of the rotor with respect to stator is reflected by modeling Independent two computational domains. Fluid domains are modeled using the unstructured grid system with dynamic moving and local deforming methods. Unsteady, Reynolds-averaged Wavier-stokes equations with one equation Spalart-Allmaras and two-equation SST ${\kappa}-{\varepsilon}$ turbulence models are solved for unsteady flow problems and also relative moving and vibration effects of the rotor cascade are fully considered. A coupled implicit time marching scheme based on the Newmark integration method is used for computing the governing equations of fluid-structure interaction problems. Detailed vibration responses for different flow conditions are presented and then vibration characteristics are physically investigated in the time domain as computational virtual tests.

Nonlinear Characteristics of Low-speed Flow Induced Vibration for the Safety Design of Micro Air Vehicle

  • 장태진;김동현;이인
    • 한국소음진동공학회논문집
    • /
    • 제12권11호
    • /
    • pp.873-881
    • /
    • 2002
  • The fluid induced vibration (FIV) phenomena of an equivalent airfoil system of MAV have been investigated in low Reynolds number flow region. Unsteady flows with viscosity are computed using two-dimensional incompressible Navier-Stokes equations. The present fluid/structure interaction analysis is based on one of the most accurate computational approach with computational fluid dynamics (CFD) and computational structural dynamics (CSD) techniques. The highly nonlinear fluid/structure interaction phenomena due to severe flow separations have been analyzed for the low Reynolds region that has a dominancy of flow viscosity. The effects of Reynolds number and initial angle of attack on the fluid/structure coupled vibration instability are shown and the qualitative trend of FIV phenomenon is investigated.

사장교 케이블의 풍진동 해석을 통한 비선형 댐퍼의 성능 검증 (Performance Evaluation of a Nonlinear Cable Damper for Stay Cables Using Wind Vibration Analysis)

  • 김상범;이성진
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.603-606
    • /
    • 2007
  • Wind induced vibration of a stay cable with a nonlinear friction damper is investigated. Stay cables are likely to vibrate under several wind-related environments, and cable dampers can be used to suppress the excessive vibrations of stay cables. Conventional design of cable dampers are based on the equivalent modal damping achieved by the cable damper. However, the equivalent modal damping achieved by nonlinear dampers are depend on the vibration characteristics like the amplitude of the vibration. In this paper, not only the achieved equivalent modal damping, but also the vibration levels under gust wind are analyzed through the time domain buffeting analysis. Numerical simulation results show the efficacy of a nonlinear friction damper for suppressing the excessive vibration of a stay cable.

  • PDF

임의 형태를 가진 보의 진동해석 (Vibration Analysis of Arbitrarily-Shaped Beams)

  • 민경원;강경수;홍성목
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1993년도 가을 학술발표회논문집
    • /
    • pp.175-180
    • /
    • 1993
  • A new method for the vibration analysis of arbitrarily-shaped beams is proposed on the assumption of imaginary seperation of the beams into prismatic beams and the remaining portions. The stiffness and mass of the beams are devided into two portions according to the seperation. Applying the mode shapes of prismatic beams and Lagrange's equations give new characteristics equation. This equation has a low dimension of matrix with the coupling terms showing the effect of remaining portions on the vibration of arbitrarily-shaped beams

  • PDF

회전관성댐퍼를 이용한 토글가새 시스템 개발 (Toggle Bracing System Using the Rotational Inertia Damper)

  • 황재승;이상현;김준희;김장윤
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.348-354
    • /
    • 2003
  • This study outlines the analysis of toggle system and the vibration control performance when the toggle-rotational inertia damper system was applied to a structure. Numerical analysis shows that the relative displacement of the structure can be amplified by amplification mechanism of the toggle system and the capacity of the damper can be reduced without the loss of vibration control performance. It is also observed that vibration control effects is caused by the increase of equivalent mass due to the rotational inertia of damper.

  • PDF