• 제목/요약/키워드: Compressive video sensing

검색결과 12건 처리시간 0.02초

Distributed Video Compressive Sensing Reconstruction by Adaptive PCA Sparse Basis and Nonlocal Similarity

  • Wu, Minghu;Zhu, Xiuchang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권8호
    • /
    • pp.2851-2865
    • /
    • 2014
  • To improve the rate-distortion performance of distributed video compressive sensing (DVCS), the adaptive sparse basis and nonlocal similarity of video are proposed to jointly reconstruct the video signal in this paper. Due to the lack of motion information between frames and the appearance of some noises in the reference frames, the sparse dictionary, which is constructed using the examples directly extracted from the reference frames, has already not better obtained the sparse representation of the interpolated block. This paper proposes a method to construct the sparse dictionary. Firstly, the example-based data matrix is constructed by using the motion information between frames, and then the principle components analysis (PCA) is used to compute some significant principle components of data matrix. Finally, the sparse dictionary is constructed by these significant principle components. The merit of the proposed sparse dictionary is that it can not only adaptively change in terms of the spatial-temporal characteristics, but also has ability to suppress noises. Besides, considering that the sparse priors cannot preserve the edges and textures of video frames well, the nonlocal similarity regularization term has also been introduced into reconstruction model. Experimental results show that the proposed algorithm can improve the objective and subjective quality of video frame, and achieve the better rate-distortion performance of DVCS system at the cost of a certain computational complexity.

분산 압축 비디오 센싱을 위한 스킵모드 부호화 (A Skip-mode Coding for Distributed Compressive Video Sensing)

  • ;;;;박영현;전병우
    • 방송공학회논문지
    • /
    • 제19권2호
    • /
    • pp.257-267
    • /
    • 2014
  • 분산 압축 비디오 센싱 (DCVS) 기술은 압축센싱 및 분산 비디오 부호화 기술의 결합을 통해 저 비용의 샘플링을 실현하는 새로운 패러다임이다. 본 논문에서는 프레임 간 높은 시간 상관성을 활용한 DCVS에서의 스킵모드 부호화 방법을 제안한다. 제안하는 방법은 일정조건을 만족하는 비 키-프레임에 대한 측정값을 복호화기에 전송하지 않아도 시간적 보간법을 통해 해당 비 키-프레임의 복원이 가능하도록 하여 율-왜곡 측면에서 좋은 압축 성능을 보장한다. 이와 더불어, 더 나은 시간적 보간을 위하여 계층적 구조를 사용하는 방법을 제안한다. 실험 결과, 제안하는 스킵모드 부호화 방법은 약간의 PSNR 감소에 비해 매우 높은 측정율 절약이 되는 것을 확인하였다. 또한, 제안하는 방법을 높은 시간 연관성을 갖는 비디오 영상에 적용할 경우, 복호화기의 연산 복잡도가 평균 43.75% 감소하는 것을 확인하였다.

Single Pixel Compressive Camera for Fast Video Acquisition using Spatial Cluster Regularization

  • Peng, Yang;Liu, Yu;Lu, Kuiyan;Zhang, Maojun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권11호
    • /
    • pp.5481-5495
    • /
    • 2018
  • Single pixel imaging technology has developed for years, however the video acquisition on the single pixel camera is not a well-studied problem in computer vision. This work proposes a new scheme for single pixel camera to acquire video data and a new regularization for robust signal recovery algorithm. The method establishes a single pixel video compressive sensing scheme to reconstruct the video clips in spatial domain by recovering the difference of the consecutive frames. Different from traditional data acquisition method works in transform domain, the proposed scheme reconstructs the video frames directly in spatial domain. At the same time, a new regularization called spatial cluster is introduced to improve the performance of signal reconstruction. The regularization derives from the observation that the nonzero coefficients often tend to be clustered in the difference of the consecutive video frames. We implement an experiment platform to illustrate the effectiveness of the proposed algorithm. Numerous experiments show the well performance of video acquisition and frame reconstruction on single pixel camera.

효과적인 MC-BCS-SPL 알고리즘과 예측 구조 방식에 따른 성능 비교 (An Effective MC-BCS-SPL Algorithm and Its Performance Comparison with Respect to Prediction Structuring Method)

  • 류중선;김진수
    • 한국정보통신학회논문지
    • /
    • 제21권7호
    • /
    • pp.1355-1363
    • /
    • 2017
  • 최근에 낮은 복잡도의 부호화기를 구현하기 위해 분산 비디오 부호화 와 압축센싱을 결합한 구조로서 분산 압축 비디오 센싱기술에 대한 연구가 활발히 진행되고 있다. 기존에 움직임 보상 블록 압축센싱 기술(MC-BCS-SPL)은 가장 간단한 표본화를 추구하면서 모든 압축센싱 프레임을 갖는 DCVS방식중의 효과적인 방안으로 다루어져 왔다. 이 방식은 키 프레임과 WZ 프레임으로 분리하여 압축센싱한다. 그러나 MC-BCS-SPL 방식은 복호화기에서 WZ 프레임을 복원할 때, 움직임이 큰 영상 시퀀스의 경우에 화질 저하가 발생시키는 단점이 존재한다. 본 논문에서는 이러한 기존의 문제점을 극복하기 위한 개선된 MC-BCS-SPL 방식을 제안한다. 제안한 방식은 연속적인 키 프레임 간 에 존재하는 높은 상관관계를 이용하여 키 프레임을 참조함으로써 초기 영상을 보정한다. GOP 예측 구조 방식에 따른 율-왜곡 성능을 비교한다. 다양한 실험 결과를 통하여 제안하는 알고리즘이 기존 알고리즘보다 더 좋은 화질을 제공함을 보여준다.

멀티콥터 영상 전송을 위한 압축 센싱 기법 (Compressed Sensing Techniques for Video Transmission of Multi-Copter)

  • 정국현;이선의;이상화;김진영
    • 한국위성정보통신학회논문지
    • /
    • 제9권2호
    • /
    • pp.63-68
    • /
    • 2014
  • 본 논문에서는 멀티콥터의 효율적 영상 전송을 위해 필요한 압축센싱 기법을 제안한다. 제안된 구조는 압축센싱에 기반한 데이터 용량을 줄이는 것에 중점을 둔다. 우선 Spectrum sensing의 기본원리를 설명하고 AMP(Approximate Message Passing)와 CoSaMP(Compressive Sampling Matched Pursuit)을 수학적 분석과 모의실험 결과를 통해서 비교한다. 또한 두 알고리즘을 계산시간과 복잡도 관점에서 평가하고 멀티콥터 동작에 적합한 알고리즘을 제안한다. 본 논문의 실험결과는 AMP 알고리즘이 CoSaMP 알고리즘보다 계산시간이 적고 이미지 에러 확률도 낮다는 것을 보여준다.

Space-Time Quantization and Motion-Aligned Reconstruction for Block-Based Compressive Video Sensing

  • Li, Ran;Liu, Hongbing;He, Wei;Ma, Xingpo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권1호
    • /
    • pp.321-340
    • /
    • 2016
  • The Compressive Video Sensing (CVS) is a useful technology for wireless systems requiring simple encoders but handling more complex decoders, and its rate-distortion performance is highly affected by the quantization of measurements and reconstruction of video frame, which motivates us to presents the Space-Time Quantization (ST-Q) and Motion-Aligned Reconstruction (MA-R) in this paper to both improve the performance of CVS system. The ST-Q removes the space-time redundancy in the measurement vector to reduce the amount of bits required to encode the video frame, and it also guarantees a low quantization error due to the fact that the high frequency of small values close to zero in the predictive residuals limits the intensity of quantizing noise. The MA-R constructs the Multi-Hypothesis (MH) matrix by selecting the temporal neighbors along the motion trajectory of current to-be-reconstructed block to improve the accuracy of prediction, and besides it reduces the computational complexity of motion estimation by the extraction of static area and 3-D Recursive Search (3DRS). Extensive experiments validate that the significant improvements is achieved by ST-Q in the rate-distortion as compared with the existing quantization methods, and the MA-R improves both the objective and the subjective quality of the reconstructed video frame. Combined with ST-Q and MA-R, the CVS system obtains a significant rate-distortion performance gain when compared with the existing CS-based video codecs.

신뢰성 예측을 이용한 분산 압축 비디오 센싱의 성능 개선 (Performance Improvement of Distributed Compressive Video Sensing Using Reliability Estimation)

  • 김진수
    • 한국산업정보학회논문지
    • /
    • 제23권6호
    • /
    • pp.47-58
    • /
    • 2018
  • 최근에 원거리 비디오 센싱과 같은 응용은 많은 무선 네트워크에 중요한 응용으로 크게 관심을 받고 있다. 분산 압축 비디오 센싱기술은 높은 부호화 복잡도를 간단히 하고, 동시에 비디오 데이터를 캡처함과 동시에 압축함으로써 이 분야에 적용 가능한 기술로 고려되고 있다. 특히, 움직임 보상 블록 압축센싱 기술인 MC-BCS-SPL은 분산 압축 비디오 센싱 방법 중에 효과적인 기술로서 고려되고 있으나, 복원된 위너-지브 프레임에서 우수하지 못한 성능을 제공한다. 본 논문에서는 기존의 MC-BCS-SPL 알고리즘을 살펴보고, 이웃하는 키프레임 사이에 신뢰성에 기초하여 효과적으로 움직임 보상 프레임을 얻는 방법을 도입함으로써 우수한 화질을 제공하는 방법을 제안한다. 다양한 실험 결과를 통하여 제안한 알고리즘은 기존의 알고리즘에 비해 우수한 화질을 제공할 수 있음을 확인한다.

Joint Sampling Rate and Quantization Rate-Distortion Analysis in 5G Compressive Video Sensing

  • Jin-xiu Zhu;Christian Esposito;Ai-min Jiang;Ning Cao;Pankoo Kim
    • Journal of Internet Technology
    • /
    • 제21권1호
    • /
    • pp.203-219
    • /
    • 2020
  • Compressed video sensing (CVS) is one of the 5G application of compressed sensing (CS) to video coding. Block-based residual reconstruction is used in CVS to explore temporal redundancy in videos. However, most current studies on CVS focus on random measurements without quantization, and thus they are not suitable for practical applications. In this study, an efficient ratecontrol scheme combining measurement rate and quantization for residual reconstruction in CVS is proposed. The quantization effects on CS measurements and recovery for video signals are first analyzed. Based on this, a mathematical relationship between quantitative distortion (QD), sampling rate (SR), and the quantization parameter (QP) is derived. Moreover, a novel distortion model that exhibits the relationship between QD, SR, and QP is presented, if statistical independency between the QD and the CS reconstruction distortion is assumed. Then, using this model, a rate-distortion (RD) optimized rate allocation algorithm is proposed, whereby it is possible to derive the values of SR and QP that maximize visual quality according to the available channel bandwidth.

시간 상관관계를 이용한 분산 압축 비디오 센싱 기법의 복원 화질 개선 (Reconstructed Iimage Quality Improvement of Distributed Compressive Video Sensing Using Temporal Correlation)

  • 류중선;김진수
    • 한국산업정보학회논문지
    • /
    • 제22권2호
    • /
    • pp.27-34
    • /
    • 2017
  • 가장 간단한 샘플링을 위한 목적으로 SPL (Smoothed Projected Landweber)기법 기반의 움직임 보상 블록 압축센싱 기법이 모든 센싱 프레임들에 대해 분산 압축 비디오 센싱 기술이 적용되는 효과적인 방안으로 연구되어 오고 있다. 그러나 기존의 움직임 보상 블록기반의 압축센싱 기법은 매우 간단하여 복원된 위너-지브 프레임에서 우수한 화질을 제공하지 못하는 한계점이 있다. 본 논문에서는 기존의 움직임 보상 블록기반의 압축센싱 기법을 이용한 위너-지브 프레임에서 우수한 화질을 제공될 수 있도록 알고리즘을 변형한다. 즉, 제안된 알고리즘은 참조 프레임이 연속적인 프레임들에 있어 시간적 상관관계에 기초해서 적응적으로 선택되도록 하는 방법으로 설계된다. 다양한 실험 결과를 통하여 제안한 알고리즘은 기존의 알고리즘에 비해 우수한 화질을 제공할 수 있음을 확인한다.

Non-Iterative Threshold based Recovery Algorithm (NITRA) for Compressively Sensed Images and Videos

  • Poovathy, J. Florence Gnana;Radha, S.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권10호
    • /
    • pp.4160-4176
    • /
    • 2015
  • Data compression like image and video compression has come a long way since the introduction of Compressive Sensing (CS) which compresses sparse signals such as images, videos etc. to very few samples i.e. M < N measurements. At the receiver end, a robust and efficient recovery algorithm estimates the original image or video. Many prominent algorithms solve least squares problem (LSP) iteratively in order to reconstruct the signal hence consuming more processing time. In this paper non-iterative threshold based recovery algorithm (NITRA) is proposed for the recovery of images and videos without solving LSP, claiming reduced complexity and better reconstruction quality. The elapsed time for images and videos using NITRA is in ㎲ range which is 100 times less than other existing algorithms. The peak signal to noise ratio (PSNR) is above 30 dB, structural similarity (SSIM) and structural content (SC) are of 99%.