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Abstract 
 

Single pixel imaging technology has developed for years, however the video acquisition on the 
single pixel camera is not a well-studied problem in computer vision. This work proposes a 
new scheme for single pixel camera to acquire video data and a new regularization for robust 
signal recovery algorithm. The method establishes a single pixel video compressive sensing 
scheme to reconstruct the video clips in spatial domain by recovering the difference of the 
consecutive frames. Different from traditional data acquisition method works in transform 
domain, the proposed scheme reconstructs the video frames directly in spatial domain. At the 
same time, a new regularization called spatial cluster is introduced to improve the performance 
of signal reconstruction. The regularization derives from the observation that the nonzero 
coefficients often tend to be clustered in the difference of the consecutive video frames. We 
implement an experiment platform to illustrate the effectiveness of the proposed algorithm. 
Numerous experiments show the well performance of video acquisition and frame 
reconstruction on single pixel camera. 
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1. Introduction 

The cost of a high-resolution sensors in the visible spectrum has fallen dramatically over the 
last decade. Unfortunately, the sensors of the invisible spectrum still remain pricey. The 
research of high resolution imaging beyond the visible spectrum with low-resolution sensors 
or even single pixel sensor is of great potential in both the science field and commercial 
community.  

Compressive sensing (CS) [1, 2] is a new theory belongs to the area of computer vision[3-8]. 
It is very popular in recent years as for its widely application in compressive imaging[9]. The 
single pixel camera is one of the prominent applications and attracts many researches’ 
attention [10]. Although the imaging of the single pixel camera develops, the techniques for 
single pixel video camera are still not fully exploited. 

A straightforward way to implement a compressive sensing video acquisition scheme is to 
consider each frame in a video sequence as a stand-alone image, perform compressive 
measurements on them, store the measurements, and reconstruct each frame. This method 
need quantity of measurements even if just generate a low-rate video clip. At the same time, 
the classic methods to recover the frames, such as OMP [11], FISTA [12] and Bregman [13], 
are based on the iterative scheme, leading to a high time consumption.  

In recent years, improvements have been made for these classic methods [14-16]. 
Figueiredo and Nowak proposed soft thresholding method [17, 18] under the expectation 
minimization framework. In [19, 20], the total variation regularization is utilized to replace the 
L1-norm. Osher et al. [21, 22] introduced Bregman iterative regularization and then extended 
to many fields [23, 24]. Yin et al. [25, 26] improve the Bregman method in time consumption 
and performance. Burger [27-29] introduced an inverse scale space method for solving 
L1-minimization problems. One characteristic of all these algorithms is that the reconstruction 
process is iterative. 

For another hand, several multi-pixel extensions to the single pixel camera have been 
proposed recently, with the goal of increasing the measurement rate [30-34]. One 
characteristic of all these extensions is that the system needs relative high resolution sensors, 
this makes them inapplicable for single pixel camera imaging where high resolution sensor 
arrays are prohibitively expensive. 

In this paper, an approach for fast video data acquisition on single pixel camera in spatial 
domain is proposed. The video generation process focuses on reconstructing the difference of 
consecutive frames. The approach keeps the measurement matrix constant in the linear 
measurement process, thus we can establish mathematical relation among consecutive frames 
based on compressive sensing theory. Then a new regularization called spatial cluster is 
introduced. The regularization consists of sparsity prior and cluster prior which can improve 
the performance of reconstruction algorithm. After reconstructing the difference of 
consecutive video frames, we can obtain the video by adding the recovered difference to the 
last frame one by one. In all, the new video acquisition scheme can decrease the data size and 
computational cost by reconstructing the difference of frames instead of video frames. 

This paper is organized as follows. Section 2 introduces the description of the model of the 
single pixel camera scheme. Section 3 covers the new regularization and the reconstruction 
algorithm. In section 4, the results in numerical simulations and real data are shown and we 
also compare our algorithm with several other methods. Lastly, we conclude with a short 
discussion in Section 5. 
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2. Imaging Model 
We implement the single pixel camera with a XGA 2xLVDS DMD from the Texas 
Instruments controlled by DMD Discovery 4100 chipest. The resolution of the DMD is 
1920×1080 and each micro mirror can flutter at maximum rate of 20kHz, which can produce 
an approximate 10fps video sequence with a resolution of 100×100 in theory. The architecture 
of the platform is shown in Fig. 1. The scene is lighted by the modulated light from DMD, the 
binary coded patterns are recorded as A. An electric appliance is adopted to make the scene 
moving around. The Newport single pixel sensor 818-UV/DB obtains the measurement b 
synchronized. Each frame x of the video can be reconstructed based on compressive sensing 
theory. 

b Ax=                                                                           (1) 
 

 
Fig. 1. (a) Schematic of our design and a photograph of our prototype; (b) Photograph of our 

platform. An electric appliance is adopted to make the scene moving around. 
 

To improve the video acquisition on single pixel imaging system, a new imaging model is 
proposed. This model refers to recovering the difference of the consecutive frames rather than 
directly obtaining the video frame one by one. As the difference of the consecutive frames is 
sparse in spatial domain, we can recover the signal directly. For another hand, the number of 
measurement decreases as most pixel in difference is zero. 

The detailed description of the video acquisition model is shown in Fig. 2. The testing 
frames are employed from datasets CDnet[35] donated as Backdoor. These frames represent a 
girl passing through the backdoor. The crucial element of the acquisition scheme is to fix the 
measurement matrix A  in Eq.1. This indicates that we shall use the same set of binary coded 
patterns cyclically. The initial frame 1x  is recovered on the framework of compressive 
sensing theroy. For the upcoming video frames, we refer to recovering the difference of the 
consecutive frames rather than directly obtaining the video frame. As the measurement matrix 
is fixed, we can establish the mathematical relation between the difference of consecutive 
frames and the measurement as below: 

 1 1 1- ( )n n n n n nb b b Ax Ax A x x− − −∇ = − = = −                                            (2) 

Where nb and 1nb − are two neighboring measurements, A  is the constant measurement 
matrix, nx  and 1nx − are the consecutive frames. From Eq.2, we can find that if the differene 
satisfies sparsity prior, the signal can be reconstucted in the framework of compressive sensing 
theory.  
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Fig. 2. The description of the compressive sensing video scheme. The testing frames are employed 
from datasets CDnet donated as Backdoor. These frames represent a girl passing through the backdoor. 

 
Our experiment platform is a compressive imaging system based on the theory of 

compressive sensing. The new video acquisition scheme is adopted to improve the efficiency 
of the video generation on single pixel imaging system. At the same time, the single pixel 
sensor can response to both the visible spectrum and invisible spectrum. 

3. Spatial Cluster Prior 
When analyzing the difference of video frames of natural scene, we find that the nonzero 
elements always have the attribute of spatial sparsity and cluster. If these prior can be fully 
utilized, the performance of the signal reconstruction can be improved. In this section, a new 
regularization combines the sparsity and the spatial cluster is proposed. Then the new 
regularization based signal reconstruction algorithm which can enable a better performance is 
introduced. 

3.1 Spatial Cluster Regularization 
By observing and analyzing natural scene video data, two important properties of the 
difference of the consecutive frames are figured out: sparsity and cluster. In the following, a 
further analysis of these two properties are illustrated by an example selected from stationary 
video data. Fig. 3 shows the instance of real video frames of a letter ‘Y’. We can find that in 
Fig. 3(c), the changes in difference image cluster in spatial domain. In stationary video, 
changes occur while objects moving, and the changes are always small. From the intensity 
distribution of the difference image in Fig. 3(d), we can figure out the sparsity prior as well. In 
all, the nonzero elements in difference of the frames are sparse and always appear cluster but 
not randomly distributed. More specially, the R, G and B channel share the same properties in 
each channel respectively. 

By enforcing these two properties, it leads to several advantages: 1) Accelerating the 
convergence. As the new regularization is added, the algorithm has a more rapid convergence. 
2) Decreasing the minimal number of measurements. The rapid convergence leads to less 
measurements. 3) Improving robustness to noise and preventing the recovered data from 
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having artifacts. These advantages enable the proposed algorithm to efficiently obtain stable 
and robust sparse reconstruction. 
 

 
Fig. 3. An analysis of the real frame data: (a) and (b) are two consecutive video frames, (c) the 

difference image of the two frames, (d) the intensity distribution of the difference image. 
 

Therefore these properties can be used as a new regularization in the optimization process to 
improve the performance. In this paper, a cluster operator is introduced to depict the property 
of cluster in mathematical form. The operator is to measure the cluster and sparsity of the 
difference between two adjacent elements of the signal. For the clustered signal nx R∈ , the 
nonzero coefficients group in certain region and the L2-norm of the cluster operator on the 
difference signal tends to be small. This regularization is added to the objective function in the 
optimization process to improve the performance. 

  
2

min nx x R∇ ∈，                                                             (3) 

Where ( )∇   represents the cluster operator. 
 

3.2 Spatial Cluster Regularization Based Algorithm (SCA) 
The combination of the sparsity prior and the cluster prior is utilized as a regularization in the 
signal reconstruction. The objective function of optimization problem changes to: 
 

     2 2

1 2 2

1min
2 2

x x Ax bβα + ∇ + −                                            (4) 

 
Where m nA R ×∈  is the measurement matrix, nx R∈  is the spares signal, and mb R∈  is the 
measurement vector, ( )∇   represents the difference operator. α  and β  are parameters used 
to balance the two prior terms. 

For a 2D image signal, it is usually reshaped to a 1D vector to implement the reconstruction. 
For a reshaped signal nx R∈ , the cluster operator can be transform to a matrix multiplication 
as shown in Eq.5. 

 =x Tx∇                                                                        (5) 
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Define matrix T as transform matrix. We can easily obtain the specific value of the matrix 

T  by the definition of the difference operator. 
1 -1

1 -1
=

1 -1
1 n n

T

×

 
 
 
 
 
 
  

                                                     (6) 

The L2-norm of the x∇  can be represented as below: 

2 2
=x Tx∇                                                              (7) 

Then the Eq.4 is transformed to an unconstraint convex optimization: 
2 2

1 2 2

1arg min
2 2x

x Tx Ax bβα + + −                                         (8) 

The L2-norm terms of the Eq.8 are approximated by their first order Taylor expansion 
at = kx x and an L2-proximity term at = kx x . 

22 2
2 2

1 1 1= ( )
2 2 2

k T k kTx Tx T Tx x x x
σ

+ ⋅ + −                                 (9) 

22 2
2 2

1 1 1= ( ) ( )
2 2 2

k T k kAx b Ax b A Ax b x x x
ω

− − + − ⋅ + −                 (10) 

Where σ  and ω  are positive and sever as the error control parameters. 
Replacing the L2-norm of Eq.8 with Eq.9, Eq.10 and discarding the constant terms, we can 

obtain a new objective function: 

 
2

1 2

1arg min ( )
2

T k T k k

x
x T Tx x A Ax b x x xα β

δ
+ ⋅ + − ⋅ + −                (11) 

Where δ  is a constant relevant to parameters σ and ω . Finally we can yield a new 
iterative scheme: 

21
1 2

1min ( (( ) ))
2

k k T T k T

x
x x x x T T A A x A bα β

δ
+ ← + − − + −             (12) 

Motivated by the Bregman iteration, we replace the L1-norm term by the Bregman distance 
based on a convex function

1
( )=J x xα : 

1 min ( , ) ( )
kk p k

Jx
x D x x H x+ ← +                                         (13) 

Where 
2

2

1( )= ( (( ) ))
2

k T T k TH x x x T T A A x A bβ
δ

− − + −                      (14) 

To minimize the objective function Eq.13, we derivatives the function and yield the 
optimality conditions: 

1 110= ( ( (( ) )))k k k k T T k Tp p x x T T A A x A bβ
δ

+ +− + − − + −             (15) 

We obtain that: 
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1 11 ( ) ( )k k k k T T T kp p x x A b T T A A xβ
δ

+ += − − + − +                (16) 

 

Letting that 0 0p =  and 0 0x = , then the sequence of kp  can be calculated one by one 
till 0k = and finally we can yield: 

1
1

0

1 ( ( ) )
kk

k T T T k

j

xp A b T T A A xβ
δ δ

+
+

=

= − + −∑                                     (17) 

Letting: 

0

1 ( ( ) )
k

k T T T k

j
u A b T T A A xβ

δ =

= − +∑                                            (18) 

The optimality conditions of the 1kx +  can be obtained by the shrinkage operation, which is 
also referred to as soft thresholding: 

1 ( , )k kx shrink uδ α+ ← ⋅                                                  (19) 
Where ,y Rα ∈ , the shrinkage operator is defined: 

( , ) sgn( ) max(| | ,0)shrink y y yα α= −                                  (20) 
This is the SCA method and its concise description is shown in Algorithm 1. This 

algorithm is an extremely fast algorithm. At the same time, it is very simple to program, 
involving only matrix multiplication and scalar shrinkage. 
 
Algorithm 1 Spatial Cluster Algorithm (SCA) 

Initialize: 0 =0x , 0 =0u ， =0k  
While not converge do 

1 ( )k k T T T ku u A b T T A A xβ+ ← + − +  
1 +1( , )k kx shrink uδ α+ ← ⋅  

1k k= +  
End 

4. Experiments and Analysis 
To demonstrate the advantage of our method, the experiments are done both on the 1D 
simulated signal and image data obtained from the CDnet datasets[35]. At the same time, we 
compare the performance of proposed method with state-of-the-art methods including 
SPGL1-LASSO [15], FISTA [12], Accelerated Linearized Bregman (ALB) [26], OMP[11], 
Inverse Scale Space method (ISS) [29], and Hard Thresholding Pursuit(HTP)[36]. In order to 
make a quantitative comparison and evaluation of these algorithms, the recovery error which 
is defined as the relative difference between the recovery signal and the ground truth signal is 
adopted to the 1D signal, the structural similarity index SSIM, as proposed in [37], is used to 
evaluate the quality of image reconstruction additionally. All experiments are done on the 
matlab environment with a 2.0 GHz laptop. 
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4.1 1D Simulated Signals 
We randomly generate a sparse 1D signal with values 1 and 0. The length of the signal is set to 
200. The number of nonzero elements is set to 10. The nonzero elements cluster into two 
groups. The measurement matrix are randomly distributed binary patterns with a one-to-zero 
ratio of 1:1. Zero-mean Gaussian noise with standard deviation =0.1σ  is added to the 
measurements. Fig. 4 shows one generated signal and its recovered results by different 
algorithms with the measurement number of 30. As the measurement number is only 3 times 
of the number of nonzero elements, all algorithms cannot obtain a perfect recovery results, 
however our method obtains relatively sparsity results with the low running time.  

 
Fig. 4. Recovery results of 1D data with noise. (a) Original data; (b) SPGL1-Lasso (error is 0.9111 and 

time is 1.3433 seconds); (c) FISTA (error is 0.9312 and time is 0.0209 seconds); (d) ALB (error is 
0.5960 and time is 0.0269 seconds); (e) OMP (error is 1.4515 and time is 0.1813 seconds); (f) ISS (error 

is 2.224 and time is 0.0497 seconds); (e) ISS (error is 1.8352 and time is 0.0374 seconds); (h)SCA 
recovery (error is 0.8211 and time is 0.0345 seconds) 

 
To study how the measurement number works on the performance of algorithms, we change 

the measurements number and record the recovery results respectively. We repeat the 
experiment 50 times for each of the measurement numbers. Fig. 5 shows the performance of 
the algorithms with increasing measurements in terms of the recovery error and running time. 
Fig. 5(a) shows the average performance of 7 algorithms with increasing measurements in 
terms of reconstruction error. X-axis denotes the measurement number and y-axis denotes the 
reconstruction error. We can see that SCA has a lowest reconstruction error in almost every 
measurement. At the same time, SCA method is more stable as it acquires nearly the same 
reconstruction error in 50 experiments. The computational cost curve of the 7 algorithms is 
plotted in Fig. 5(b). Numerical values on the x-axis denote the measurement number while 
those on the y-axis denote the running time. The running time of SCA also is lowest for all 
measurements. Overall, SCA method obtains the best and stable performance with low 
computation. 
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Fig. 5. Performance curve. (a) Reconstruction errors; (b) Running times. 

4.2 2D Signals 
We also test our proposed method with different algorithms by using both simulated and real 
video sequences. The frame size is limited to 30×30 pixels for all video sequences. This 
limitation is simply due to the operational capability of our hardware. The structural similarity 
index (SSIM) is used to evaluate the reconstruction quality. The value of the SSIM ranges 
from 0 to 1, and the bigger the better. SSIM takes the degradation of the structural information 
in the image into consideration, and therefore can provide a better and more comprehensive 
evaluation than traditional criterion such as the peak signal-to-noise ratio PSNR, which 
assesses the reconstruction qualities solely based on the intensity differences between the 
reconstructed and original frames. 

The video sequences are composed of computer-generated frames and real scene sequences 
employed from CDnet dataset. Each computer-generated sequence has 15 frames per second, 
showing a rectangular white box moving from left to right on a fixed background scene. By 
choosing different box sizes and moving speeds, four kinds of simulated video sequences are 
generated. Another 8 test video sequences are obtained from CDnet dataset which include 
different types of periodical or irregular background motion. A total of 12 video sequences are 
used in this study to evaluate the algorithms. A few example of computer-generated video 
frames are shown in Fig. 6.The measurement number is set to the 30% of the pixel number. 
Zero-mean Gaussian noise with standard deviation =0.1σ  is added to the measurements. 
 

 
Fig. 6. An example of computer-generated video sequences. Each row represents five frames in one 

simulated video sequence. 
 

An example of reconstructed frames is shown in Fig. 7. The first row shows the second 
frame of the simulated video sequences. The second row shows the 13th frame of the 
sequences. Fig. 7(a) illustrates the ground truth video data. Fig. 7(b)-(f) present video frames 
reconstructed with different methods. 
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Fig. 7. An example of reconstructed frames from stimulated video sequencewith different methods. 

(a) Ground truth; (b) SPGL1-Lasso; (c) FISTA; (d) ALB; (e) OMP; (f)ISS; (g)HTP; (h) SCA. 
 
 

For the reconstructed video sequences, we observe that the SPGL1-Lasso, method has an 
acceptable result with high expense in time consumption. The FISTA, ALB, OMP, HTP and 
ISS method can only obtain a skeleton of the object. The proposed SCA method can 
reconstruct a satisfied result. The SSIM values of these different methods with different 
measurement number are depicted in Fig. 8. From the figure, we can see that the SCA method 
has the best performance in all experiments. 
 

 
Fig. 8. The average SSIM values of different methods with different measurement number on 

simulated video sequence 
 

The SSIM values of these different methods on all the datasets are summarized in Table 1. 
For the simulated video sequences, we observe that the performance of the SCA method has 
the best reconstruction quality in most video sequence. The last 4 video sequence has a higher 
SSIM value than other data because the speed of moving object is relatively slow. The 
difference of the consecutive frames is more sparse, leading to a better performance of 
reconstruction algorithms. 
 

Table 1. Video reconstruction results of 7 methods for simulated video sequences. 
 

Video 
Average SSIM 

SPGL1-Lasso FISTA ALB OMP ISS HTP SCA 
computer-generated-1 0.154 0.101 0.224 0.098 0.113 0.146 0.351 
computer-generated-2 0.146 0.133 0.208 0.102 0.122 0.144 0.305 
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computer-generated-3 0.159 0.122 0.312 0.114 0.109 0.151 0.310 
computer-generated-4 0.136 0.115 0.217 0.109 0.106 0.129 0.360 

Backdoor 0.158 0.105 0.221 0.111 0.114 0.153 0.355 
BusStation 0.149 0.102 0.230 0.108 0.110 0.145 0.353 

FluidHighway 0.151 0.111 0.225 0.113 0.115 0.160 0.350 
Pedestrians 0.143 0.108 0.236 0.099 0.107 0.122 0.362 

Skating 0.271 0.243 0.441 0.199 0.249 0.251 0.513 
Traffic 0.311 0.304 0.551 0.295 0.332 0.301 0.598 

Turbulence0 0.307 0.318 0.591 0.301 0.341 0.298 0.587 
WinterStreet 0.365 0.370 0.621 0.316 0.401 0.359 0.712 

 
 

The same experiment is done on real video sequences. We use the single pixel imaging 
platform shown in Fig. 1 to acquire the video clips. The size of the video frame is set to 70×70. 
The measurement rate is set to 30% of the resolution. Limited to the operational capability of 
hardware, the speed of moving speed is set to approximate 3 pixels per second. We test all the 
method on different scene such as moving letters, moving boxes.  
 
 

 
Fig. 9. An example of reconstructed frames of 70×70 from video sequence using the differencing 

method. (a) Ground truth; (b) SPGL1-Lasso; (c) FISTA; (d) ALB; (e) OMP; (f)ISS; (g)HTP; (h) SCA. 
 
 

An example of reconstructed frames of a moving letter ‘Y’ is shown in Fig. 9. The first row 
illustrates the second frame of the video sequence. The second row illustrates the sixth frame 
of the video sequence. To make a clear view of the reconstruction results, the image data are 
all normalized. Fig. 9(a) shows the ground truth video data. Fig. 9(b)-(h) present video frames 
reconstructed with different methods. From the results we can obtain an almost same 
conclusion with the stimulated video frames. The proposed SCA method has the best 
performance on the quality of reconstruction. We finally obtain a video clips based on the 
video acquisition in a fast time. The results are shown in Fig. 10. To show a visible results, the 
difference signals are all normalized. The results on both simulated and real video sequences 
show the proposed algorithms gain marked improvement over previous algorithms when 
cluster priors are available. 
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Fig. 10. An example of reconstructed video sequence 

 
 

We also tested our proposed method on natural image signal recovery. In this experiment, 
signals of interest are natural images of size 64×64 such as the 64×64 Lena, House and Boat 
images. The sparse transform basis used for these natural images is the well-known 
Daubechies 9/7 wavelet transform. All images are implicitly regarded as 1-D signals of length 
64×64. Fig. 11 shows the visually reconstructed 64×64 Lena image from 30% of 
measurements by using different algorithms. The OMP method is not employed because of its 
high complexity and bad performance. Fig. 11(a) is the ground truth video data. Fig. 11(b)-(g) 
present natural image reconstructed with different methods. From the experiments, we can see 
that our method has a relative low reconstruction error and it works well on 2D natural image 
signals. 
 

 
Fig. 11. An example of reconstructed natrual siganl. (a) Ground truth; (b) SPGL1-Lasso (error is 

0.2318); (c) FISTA (error is 0.1668); (d) ALB (error is 0.1098); (e) ISS (error is 0.1132); (f) HTP (error 
is 0.1581); (g)SCA recovery (error is 0.0911) 

5. Conclusion 
In this paper, a new model for video acquisition of the single pixel camera in spatial domain is 
introduced and a novel regularization called Spatial Cluster is proposed. It has been applied to 
sparse recovery on both simulated and practical data. Experimental results demonstrate the 
performance guarantee of the proposed algorithm and show marked improvement over 
previous algorithms. There also exists some limitations of the method. The system exploits the 
difference of the consecutive frames, therefore, the scene with extremely big changes cannot 
be handled. Since the measurement rate of the hardware, the video acquisition is not efficiency. 
In the future, we will use a low resolution sensor to replace the single pixel detector to improve 
the measurement rate. At the same time, the reconstruction method is also needed to be 
improved to real-time scale. 
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