• Title/Summary/Keyword: Compressive strength evaluation

Search Result 856, Processing Time 0.025 seconds

The Evaluation of Compressive Strength in Cement Mortar using Electromagnetic Properties (전자기 특성을 이용한 시멘트 모르타르의 압축강도 평가)

  • Kim, Dong-Baek;Kwon, Seung-Jun
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.3
    • /
    • pp.51-57
    • /
    • 2008
  • NDT(Non-Destructive Testing Evaluation) using electromagnetic(EM) properties can be used for evaluation of physical performance in cement-based materials. In this study, a technique for strength evaluation in cement mortar is proposed through the measured EM properties(conductivity and dielectric constant). For this research, cement mortar specimens with 5 W/C ratios are made for evaluation of compressive strength and they are also utilized for tests of EM properties in the range of $0.2{\sim}20GHz$ frequency considering exposure condition and curing period. The averaged conductivity and dielectric constant in $5{\sim}20GHz$ frequency are reduced to $83{\sim}93%$ and $81{\sim}87%$, respectively with increasing water to cement ratios. Through the linear regression analysis, relationships between EM properties and results from the compressive strength are obtained, which shows higher correlated factor($0.93{\sim}0.94$) in the specimens exposed to room condition. The gradients in dielectric constant for strength results is measured to be higher than those in conductivity by $3.9{\sim}5.1$ times. The results from dielectric constant in room condition shows the most efficient relation for evaluation of strength.

Simulation and Evaluation of Compressive Strength of FRP According to the Winding Orientation of Glass Fiber (FRP에서 와인딩 각도에 따른 압축강도의 시뮬레이션과 특성평가)

  • Park, Hoy-Yul;Kang, Dong-Pil;Han, Dong-Hee;Kim, In-Sung;Pyo, Hyun-Dong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05b
    • /
    • pp.250-253
    • /
    • 2000
  • The fiber orientation in FRP has a great effect on the strength of FRP because the strength of FRP mainly depends on the strength of fiber. Unidirectional FRP made by pultrusion method has comparatively lower compressive strength than tensile strength. Compressive strength of unidirectional FRP may be increased by filament winding layer which has tensile stress when compressive stress was loaded. In this study, compressive strength and stresses of FRP rods were simulated according to the winding orientation of glass fiber. Inner part of FRP was made unidirectionally by pultrusion method and outer part of FRP was made by filament winding method. Simulated value and real evaluated compressive strength were compared to investigate stresses which is prominent to the fracture of FRP. The shear stresses had a great effect on the strength of FRP although the stress of parallel direction of FRP was much higher.

  • PDF

Evaluation of Compressive Strength and Ultrasonic Pulse Velocity according to Elapsed Time on Normal and Lightweight Aggregate Concrete at Early Age (초기재령에서 보통 및 경량골재 콘크리트의 경과시간에 따른 압축강도 및 초음파 펄스 속도의 평가)

  • Kim, Won-Chang;Choi, Hyeong-Gil;Nam, Jeong-Soo;Kim, Gyu-Yong;Lee, Tae-Gyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.409-410
    • /
    • 2023
  • In this study, the compressive strength and ultrasonic pulse velocity were evaluated according to the elapsed time on concrete mixed with normal and lightweight aggregates at early age. For evaluation in various strength ranges, the design compressive strength was set to 30, 45, and 60MPa and evaluated. As a result of the experiment, the compressive strength of concrete mixed with lightweight aggregates developed 5MPa earlier compared to normal aggregate concrete, and the UPV showed a similar tendency.

  • PDF

Evaluation of mathematical models for prediction of slump, compressive strength and durability of concrete with limestone powder

  • Bazrafkan, Aryan;Habibi, Alireza;Sayari, Arash
    • Advances in concrete construction
    • /
    • v.10 no.6
    • /
    • pp.463-478
    • /
    • 2020
  • Multiple mathematical modeling for prediction of slump, compressive strength and depth of water penetration at 28 days were performed using statistical analysis for the concrete containing waste limestone powder as partial replacement of sand obtained from experimental program reported in this research. To extract experimental data, 180 concrete cubic samples with 20 different mix designs were investigated. The twenty non-linear regression models were used to predict each of the concrete properties including slump, compressive strength and water depth penetration of concrete with waste limestone powder. Evaluation of the models using numerical methods showed that the majority of models give acceptable prediction with a high accuracy and trivial error rates. The 15-term regression models for predicting the slump, compressive strength and water depth were found to have the best agreement with the tested concrete specimens.

A Study on Comparison and Evaluation of various Strength in Seoul Granite (서울화강암의 암석강도 측정치의 비교 평가 연구)

  • 윤지선;김두영;정흥모
    • Tunnel and Underground Space
    • /
    • v.5 no.2
    • /
    • pp.144-154
    • /
    • 1995
  • In this paper, we make a study on comparison and evaluation of the seoul granite properties, which are unit weight, uniaxial compressive strength, Brazilian tensile strength and, point load strength. The typical result are as follow- 1. From the measured value of point load strength anisotropy index, the seoul granite is considered to be homogeneous. 2. There is a linear relationship between uniaxial compressive strength and size corrected point load strength index. 3. Brazilian tensile strength and size corrected point load strength index are closely tied together.

  • PDF

Prediction of Compressive Strength of Concretes Containing Silica Fume and Styrene-Butadiene Rubber (SBR) with a Mathematical Model

  • Shafieyzadeh, M.
    • International Journal of Concrete Structures and Materials
    • /
    • v.7 no.4
    • /
    • pp.295-301
    • /
    • 2013
  • This paper deals with the interfacial effects of silica fume (SF) and styrene-butadiene rubber (SBR) on compressive strength of concrete. Analyzing the compressive strength results of 32 concrete mixes performed over two water-binder ratios (0.35, 0.45), four percentages replacement of SF (0, 5, 7.5, and 10 %) and four percentages of SBR (0, 5, 10, and 15 %) were investigated. The results of the experiments were showed that in 5 % of SBR, compressive strength rises slightly, but when the polymer/binder materials ratio increases, compressive strength of concrete decreases. A mathematical model based on Abrams' law has been proposed for evaluation strength of SF-SBR concretes. The proposed model provides the opportunity to predict the compressive strength based on time of curing in water (t), and water, SF and SBR to binder materials ratios that they are shown with (w/b), (s) and (p).This understanding model might serve as useful guides for commixture concrete admixtures containing of SF and SBR. The accuracy of the proposed model is investigated. Good agreements between them are observed.

Evaluation of Tunnel Lining Concrete Using Ultrasonic Pulse Velocity Method (초음파법을 이용한 무근콘크리트 터널라이닝의 품질평가)

  • 최홍식;이시우;신용석;오영석;오광진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.795-800
    • /
    • 2001
  • Two evaluation techniques of the tunnel lining concrete using ultra sonic velocity method are developed. Modified linear regression technique is proposed to enhance the corelation between the pulse velocity and the compressive strength of core specimens. And bivariate normal distribution is assumed to evaluate the quality of concrete as a terms of compressive strength. A simple corelation table between the pulse velocity and the compressive strength of core specimens are proposed.

  • PDF

An Experimental Study on the Evaluation of Compressive Strength of Recycled Aggregate Concrete by the Core and the Non-Destructive Testing (코어 및 비파괴 시험에 의한 재생골재 콘크리트의 압축강도 평가에 대한 실험적 연구)

  • Yang Keun-Hyeok;Kim Yong-Seok;Chung Heon-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.133-136
    • /
    • 2005
  • Compressive strength of recycled aggregate concrete was tested by the core and by the non-destructive testing. A prediction model of compressive strength considering the replacement level of recycled aggregate was suggested by multi-regression analysis and was compared with test results. Also, Test results showed that the ratio of compressive strength by core and non-destructive testing to actual was somewhat affected by the replacement level of recycled aggregate.

  • PDF

Evaluation of Impact Resistance Performance of High Strength Concrete by Projectile Size and Compressive Strength (압축강도 및 비상체의 크기에 따른 고강도 콘크리트의 내충격 성능평가)

  • Kim, Hong-Sub;Kim, Gyu-Yong;Miyauchi, Hiroyukui;Nam, Jeong-Soo;Jeon, Young-Seok;Koo, Kyoung-Mo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05a
    • /
    • pp.7-10
    • /
    • 2011
  • In this study, evaluation system of impact resistance performance is proposed. Compressive strength of concrete is 40, 60 and 80MPa. It evaluate impact resistance performance to use projectile 6, 7 and 8mm size. As a result, safety performance is more higher when the compressive strength is increased in. Compared with Hughes's formula, evaluation system of impact resistance performance is appropriated.

  • PDF

Development of A Strength Test Method for Irregular Shaped Concrete Block Paver (이형 콘크리트 블록의 강도 평가방법에 관한 연구)

  • Lin, Wuguang;Park, Dae-Geun;Ryu, SungWoo;Cho, Yoon-Ho
    • International Journal of Highway Engineering
    • /
    • v.16 no.2
    • /
    • pp.11-18
    • /
    • 2014
  • PURPOSES : This study aims to develop a strength test method for irregularly shaped concrete block paver. METHODS : Ten (10) different types of concrete block pavers including porous and dense blocks were tested for strength capacities. Destructive and non-destructive methods were used to develop a strength test method for irregularly shaped concrete block paver. The flexural strength evaluation was conducted in accordance to KS F 4419, while compressive strength was conducted with a 45.7mm-diameter core specimen. The impact echo test method was used to evaluate the elastic modulus. Finally, regression analysis was used to investigate the relationship between flexural strength, compressive strength and elastic modulus based on their corresponding test results. RESULTS : The flexural strength of the tested block pavers ranged from 4MPa to 10MPa. At 95% confidence level, the coefficients of determination between compressive-flexural strength relationship and compressive strength-elastic modulus relationship were 0.94 and 0.84, respectively. These coefficients signified high correlation. CONCLUSIONS : Using the test method proposed in this study, it will be easier to evaluate the strength of irregularly shaped concrete block pavers through impact echo test and compressive test, instead of the flexural test. Relative to the flexural strength requirement of 5MPa, the minimum values of compressive strength and elastic modulus, as proposed, are 13.0MPa and 25.0GPa, respectively.