• Title/Summary/Keyword: Compressive properties

Search Result 4,072, Processing Time 0.031 seconds

THREE DIMENSIONAL FINITE ELEMENT ANALYSIS OF $BR{\AA}NEMARK\;NOVUM^{(R)}$ IMMEDIATE IMPLANT PROSTHODONTIC PROTOCOL ($Br{\aa}nemark\;Novum^{(R)}$ 즉시 임플랜트 보철 수복 방법에 관한 삼차원 유한요소 분석적 연구)

  • Kim Woo-Young;Kim Yung-Soo;Jang Kyung-Soo;Kim Chang-Whe
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.5
    • /
    • pp.463-476
    • /
    • 2001
  • Since the treatment of edentulous patients with osseointegrated implant was first introduced more than 30 years ago, implant therapy has become one of the most important dental treatment modalities today. Based on the previous experience and knowledge, $Br{\aa}nemark\;Novum^{(R)}$ protocol was introduced with the concept of simplifying surgical and prosthetic technique and reducing healing time recently. This protocol recommends the installation of three 5mm wide diameter futures in anterior mandible and the prefabricated titanium bars for superstructure fabrication. This study was designed to analyze the stress distribution at fixture and superstructure area according to changes of fixture number, diameter and superstructure materials. Four 3-dimensional finite element models were fabricated. Model 1 - 5 standard fixtures (13mm long and 3.75mm in diameter) & superstructure consisted of type IV gold alloy and resin Model 2- 3 wide diameter fixtures (13mm long and 5.0mm in diameter) & superstructure consisted of type IV gold alloy and resin Model 3-3 wide diameter fixtures (13mm long and 5.0mm in diameter) & superstructure consisted of titanium and resin Model 4-3 wide diameter fixtures (13mm long and 5.0mm in diameter) & superstructure consisted of titanium and porcelain A 150N occlusal force was applied on the 1st molar of each model in 3 directions - vertical($90^{\circ}$), horizontal($0^{\circ}$) and oblique($120^{\circ}$). After analyzing the stresses and displacements, following results were obtained. 1. There were no significant difference in stress distribution among experimental models. 2. Model 2, 3, 4 showed less amount of compressive stress than that of model 1. However, tensile stress was similar. 3. Veneer material with a high modulus of elasticity demonstrated less stress accumulation in the superstructure. Within the limites of this study, $Br{\aa}nemark\;Novum^{(R)}$ protocol demonstrated comparable biomechanical properties to conventional protocol.

  • PDF

An Investigation on the Strength Properties and Fluidity of Concrete with various Disign Strength according to Ground Granulated Blast Furnace Slag contents (설계강도가 다른 고강도콘크리트의 고로슬래그 대체율에 따른 유동성 및 강도발현특성 검토)

  • Choi, Sun-Mi;Lee, Gun-Su;Lee, Bum-Sik;Kim, Sang-Yun;Bae, Kee-Sun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.837-840
    • /
    • 2008
  • This study was achieved experiment to evaluate effect on fluidity and strength development ratio by slag replacement ratio to $40{\sim}100MPa$ HSC(High Strength Concrete) containing blast furnace slag(GGBS) and fly-ash(FA). Also it was suggested that most suitable replacement ratio of GGBS is effect by strength. The mix plan of concrete used in an experiment was used to the GGBS replacement ratio of 0, 12, 25% as the cement materials, and fly ash was used equally by replacement ratio 15%. According to test results, for use GGBS with fly ash as binder, slump of GGBS replacement ratio 25% is the most superior in 40MPa series, and appeared by thing which slump flow of GGBS 12% is the most superior in 60, 80MPa's series. The other side, was expressed that fluidity is excellent by FA replacement ratio 15% in 100MPa series. In the case of compressive strength 40MPa, it was exposed that the strength revelation is effect in until the GGBS principal parts ratio increases by replacement ratio 25%. Also, it was exposed that GGBS mixing ratio more than replacement ratio 25% is not since fitness in high strength concrete more than 100MPa.

  • PDF

Evaluation of Characteristics of G-class Cement for Geothermal Well Cementing (지열 발전정 시멘팅을 위한 G-class 시멘트 특성 평가에 관한 연구)

  • Won, Jongmuk;Jeon, Jongug;Park, Sangwoo;Choi, Hangseok
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.5
    • /
    • pp.29-38
    • /
    • 2013
  • The G-class cement is commonly used in practice for geothermal well cementing in order to protect a steel casing that is designed to transport hot water/steam from deep subsurface to ground surface during operating a geothermal power plant. In order to maintain optimal performance of geothermal wells, physical properties of the cementing material should be satisfactory. In this paper, relevant factors (i.e., groutability, uniaxial compression strength, thermal conductivity and free fluid content) of the G-class cement were experimentally examined with consideration of various water-cement (w/c) ratios. Important findings through the experiments herein are as follows. (1) Groutability of the G-class cement increases by adding a small dose of retarder. (2) There would be a structural defect caused when the w/c ratio is kept higher in order to secure groutability. (3) Thermal conductivity of the G-class cement is small enough to prevent heat loss from hot steam or water to the outer ground formation during generating electricity. (4) The G-class cement does not form free water channel in cementing a geothermal well. (5) The Phenolphthalein indicator is applicable to the distinction of the G-class cement from the drilling mud.

Chloride Penetration Properties of Portland Cement Mortar Substituted with Anion Exchange Resin Powder (음이온교환수지 분말이 치환된 포틀랜드 시멘트 모르타르의 염소이온 침투 특성)

  • Lee, Yun-Su;Lim, Seung-Min;Park, Jang-Hyun;Jung, Do-Hyun;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.1
    • /
    • pp.1-9
    • /
    • 2020
  • Chloride ion, which penetrates into the cement composites from the outside, generally diffuses by the concentration gradient. Chloride ions are adsorbed by the chemical reaction with cement hydrates. Recent studies have shown that anion exchange resin (AER) powder can effectively adsorb the chloride ion in the cement composites, and thus, the cement composites containing AER have a high chloride adsorption capacity and a good resistance for chloride penetration. In this study, the chloride adsorption ability of the AER powder was investigated under the conditions of distilled water and calcium hydroxide saturated solution to determine if the AER powder is less effective to increase the chloride adsorption ability after grinding process. The chloride adsorption ability of AER powder was compared with the previous research about the chloride adsorption of AER bead. In addition, the compressive strength, chloride diffusion coefficient (using NT Build 492 method), and the chloride profile of cement mortar substituted with AER powder were investigated. There was no decrease in the chloride adsorption capacity of AER powder but increase in the kinetic property for chloride adsorption after the grinding process. The AER powder could absorb the chloride ion in the mortar quickly, and showed better chloride ion adsorption ability than the cement hydrates.

Fabrication and Characterization of PVA/CMC Hydrogels by Freezing-Thawing Technique and Gamma-Ray Irradiation (동결/융해와 방사선 가교법에 의한 PVA/CMC 수화젤의 제조 및 특성 평가)

  • Jo, Sun-Young;Lim, Youn-Mook;Youn, Min-Ho;Gwon, Hui-Jeong;Park, Jong-Seok;Nho, Young-Chang;Shin, Heung-Soo
    • Polymer(Korea)
    • /
    • v.33 no.6
    • /
    • pp.551-554
    • /
    • 2009
  • Poly (vinyl alcohol) (PVA) and carboxymethyl cellulose (CMC) have received increasing attention in biomedical and biochemical applications because of their properties such as being water-soluble and biocompatible. In this study, a PVA/CMC hydrogel applicable to artificial cartilage was prepared by a freezing-thawing technique and a gamma-ray irradiation. The solid concentration of PVA was 7 wt% and the concentration of CMC was 4 wt%. The freezing/thawing process was repeated twice and the dose of gamma-ray irradiated was 30 kGy. Results of gelation before and after gamma-ray irradiation were similar, but the swelling degree decreased and compressive strength increased. The cytotoxicity was investigated with CCK-8 assay.

Preparation of Flakes by Extrusion Cooking Using Barley Broken Kernels (보리 파쇄립을 이용한 압출성형에 의한 후레이크 제조)

  • Choi, Hee-Don;Seog, Ho-Moon;Choi, In-Wook;Park, Mi-Won;Ryu, Gi-Hyung
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.276-282
    • /
    • 2004
  • Barley flakes were developed by extrusion cooking using broken kernels, by-products of the barley pearling process. Broken kernels from both non-waxy and waxy barley broken kernels were sufficiently gelatinized at the barrel temperature of over $100^{\circ}C$ and the moisture content of broken kernels of over 35%. Cutting and flaking roll separating properties of pellets prepared from non-waxy barley broken kernels were better than those of waxy barley broken kernels. Characteristics of pellets prepared by extrusion cooking in different mixing ratios of non-waxy and waxy barley broken kernels were investigated. As the mixing ratio of waxy barley broken kernels increased, RVA peak viscosity, apparent viscosity, and yield stress of prepared pellets decreased, while flow behavior index increased. As the mixing ratio of waxy barley broken kernels increased, compressive strength and bulk density of deep-fat fried flakes drastically decreased, and the size of air cells on cross-section increased, and thickness of cell-constituting bodies decreased. Sensory evaluation results showed that acceptability for texture and taste of flakes inclosed as the mixing ratio of waxy barley broken kernels increased, and optimum mixing level of waxy barley broken kernels appeared to be 30-40%.

Unsaturated Shear Strength Characteristics of Nakdong River Silty Sand (낙동강 실트질 모래의 불포화 전단강도 특성)

  • Jin, Guang-Ri;Shin, Ji-Seop;Park, Sung-Sik;Kim, Ki-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.2
    • /
    • pp.47-56
    • /
    • 2013
  • There are many technical problems, which can not be resolved by the concept of saturated soil mechanics. Unsaturated soils show an apparent cohesion due to negative pore pressure and relatively lower permeability due to entrapped air compared to saturated soils. The determination of engineering properties of soils with various moisture content is very important to evaluate shear strength and stability of natural and engineered soils. So various researches should be made on unsaturated soils. Especially, sandy soils are widely distributed near Nakdong river, one of the four rivers where Restoration Projects were carried out. Many structures such as dams, flood control facilities, detention facilities and reservoirs have been built in this area. In this study, unsaturated triaxial compressive tests were conducted on sands or silty sands at Nakdong river in order to provide their fundamental characteristics for design and construction of geotechnical structures. As a result of the tests, the maximum deviator stress increased as the confining stress and matric suction increased. The cohesion increased non-linearly as the matric suction increased, but the angle of internal friction was marginally changed.

Strength of Recycled Concrete with Furnace Slag Cement under Steam Curing Condition (순환골재 및 고로슬래그 시멘트를 사용한 증기양생 콘크리트의 강도 특성)

  • Lee Myung-Kue;Kim Kwang-Seo;Lee Keun-Ho;Jung Sang-Hwa
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.4 s.88
    • /
    • pp.613-620
    • /
    • 2005
  • There are some problems in utilizing recycled concrete aggregate go structural use because of the difficulties concerning about quality control and durability. It seems to be possible to utilize recycled concrete aggregate for making concrete products because quality control of concrete products is easier than ready-mixed concrete, but there are little studies about the properties of the steam-cured recycled aggregate concrete. In this study, various tests were performed such as compressive strength, flexural strength, splitting tensile strength, bonding strength and chloride ion penetration test to evaluate the effect of substitution of recycled concrete aggregate. The results of strength test showed that the concrete strength decreased with the increase of the substitution ratio of recycled concrete aggregate, but it was in the reasonable range and almost equal to that of normal concrete below the substitution ratio of $50\%$. On the other hand, strength test of furnace slag cement concrete shows that the strength of recycled concrete with furnace slag cement under curing condition lower than that of recycled concrete with ordinary portland cement under same condition. From the result of this study, it can be concluded that recycled concrete aggregate is able to be utilized for structural use but substitution ratio should be decided with care in each case. The result of this study could be used as the basic data for the structural use of recycled concrete aggregate.

Performance Based Evaluation of Concrete Material Properties from Climate Change Effect on Wind Speed and Sunlight Exposure Time Curing Condition (기후변화의 풍속과 일조시간에 따른 콘크리트 재료특성의 성능 중심 평가)

  • Kim, Tae-Kyun;Shin, Jae-Ho;Bae, Deg-Hyo;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.6
    • /
    • pp.751-759
    • /
    • 2014
  • Currently, due to global warming, occurrences of extreme climate phenomena such as heat wave, heavy snow, heavy rain, super typhoon are continuously increasing all over the world. Due to these extreme climate phenomena, concrete structures and infrastructures are exposed to serious deterioration and damage. However, researches on construction technologies and standards to confront the climate change generated problems are needed presently. In order to better handle these problems, the validity of the present concrete mixture proportions are evaluated considering wind speed and sunlight exposure time based on climate change record in Seoul, Korea. The specimens cured at various wind speed and sunlight exposure time conditions were tested to obtain their compressive and split tensile strengths at various curing ages. Moreover, performance based evaluation (PBE) method was used to analyze the target strength satisfaction percentage of the concrete cured for the curing conditions. From the probabilistic method of performance evaluation of concrete performance, feasibility and usability of current concrete mix design practice for climate change conditions can be evaluated.

An Evaluation of Applicable Feature of Structural Member Using High Volume Fly-Ash Concrete (다량치환된 플라이애시 콘크리트의 구조부재 적용성 평가)

  • Kim, Gyung-Tae;Yoo, Sung-Won
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.2
    • /
    • pp.109-114
    • /
    • 2015
  • Recently, numerous studies were dedicated on the HVFA concrete using high volume CCPs. In initial studies, main topics are dependent on material properties of HVFA concrete, but several studies were dedicated on the structural behavior of HVFA concrete such as elasticity modulus, stress-strain relationship and structural behavior nowadays. Therefore, in this paper, on the basis of recent studies on the structural behavior, 2 large-scale test members were manufactured with 7.5m span length and fly ash replacement ratio 50%, concrete compressive strength 50MPa in order to apply to the practical structure and evaluate possibility of application. From the test results, although there were small differences between test results and existing research results on the stress-strain relationship, the application to practical structure is not hard. In flexural test, as the produced pattern of displacement and strain were similar to those of general concrete without fly ash, the difference between 50% fly ash concrete and general concrete is very small. And the concrete shear strength obtained by test was similar to that of design code, so existing design code will be also able to apply.