• Title/Summary/Keyword: Compressive Strength Experiment

Search Result 613, Processing Time 0.031 seconds

High Volume Mineral Admixture Mortar According to Waste Refractory and Mixing Ratio (저미분 폐내화물 종류 및 혼입율 변화에 따른 혼화재 다량치환 모르타르의 공학적 특성)

  • Han, Sang-Yoon;Park, Do-Young;Cha, Cheon-Soo;Kim, Hyun-Woo;Yoon, Gi-Won;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.134-135
    • /
    • 2015
  • This study analysed compressive strength and the expansion characteristic to utilize a high volume mineral admixture mortar for a aerated mortar and a plastering mortar. In this experiment, the result shows that the compressive strength gain was satisfactory in case that WR was replaced within 5%. Also, the difference between WR1 and WR was insignificant. It shows that the drying shringkage properties at large was showed being satisfactory generally compared with Plain when WR was replaced, but the effect was not significant.

  • PDF

Mixture Design and Its Application in Cement Solidification for Spent Resin

  • Gan, Xueying;Lin, Meiqing;Chen, Hui
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.02a
    • /
    • pp.28-41
    • /
    • 2004
  • The study is aimed to assess the usefulness of the mixture design for spent resin immobilization in cement. Although a considerable amount of research has been carried out to determine the limits for the composition of an acceptable resin-cement mixture, no efficient experimental strategy exists that explores the full properties of waste form against composition relationship. In order to gain an overall view, this report introduces the method of mixture design and mixture analysis, and describes the design of experiment of the 5-component mixture with the constraint conditions. The mathematic models of 28-day compressive strength varying with the ingredients are fitted, and the main effect and interaction effect of two ingredients are identified quantitatively along with the graphical interpretation using the response trace plot and contour plots.

  • PDF

Properties of Low Heat Portland Cement Concrete by Changing Temperature of Aggregate (골재의 온도 변화에 따른 저발열 포틀랜드 시멘트 콘크리트의 특성)

  • Cho, Yong-Chin;Park, Kwang-Su;Shin, Su-Gyun;Won, Jong-Pil
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.4
    • /
    • pp.49-55
    • /
    • 2004
  • Properties of concrete using low heat portland cement is different from using ordinary portland cement and temperature of aggregate can be expected to have an important influence on its properties. In this study, experiment by setting up 5 levels (40, 30, 20, 4, $-2^{\circ}C$) by temperature of aggregate for evaluation properties of concrete using low heat portland cement was conducted. The experiments include slump test, air content test, change of slump, change of air content and compressive strength of concrete test. As the result of experiments, slump and air content was decreased by increasing temperature of aggregate. But it was not exceeding it's limit. Change of slump and air content was rapidly decrease by decreasing temperature of aggregate. At early age, compressive strength was influenced by the temperature of aggregate.

Degradation Propeties of Alkali-Activated Alumino-Silicate Composite Body Exposed to High Temperature (알칼리 활성화 알루미노실리케이트계 경화체의 고온 열화 특성)

  • Kim, Won-Ki;Kim, Hong-Joo;Lee, Seung-Heun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.627-630
    • /
    • 2005
  • This paper examines degradation properties of alkali-activated alumino-silicate composite body by NAS solution exposed to high temperature. Activators include sodium hydroxides and sodium silicate solution. In the result of experiment, flexural and compressive strength of AAS base mortar exposed to high temperature ($400\~600^{\circ}C$) was higher than alumina cement base mortar. Particularly, In case of compressive strength, alumina cement base mortar was decreased by about $60\~70\%$. While, AAS base mortar exposed to high temperature ($400\~600^{\circ}C$) was higher than that curing by room temperature. The above results showed that AAS base inorganic binder has a good mechanical properties exposed to high temperature($400\~600$).

  • PDF

A Study on the physical Property of the Bio Concrete (바이오콘크리트의 물리적 특성에 관한 연구)

  • Lee, Jong-Chan;Lee, Sea-Hyun;Park, Young-Shin;Park, Jae-Myung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.509-512
    • /
    • 2006
  • We have many environmental problems by the polluted materials as a results of mechanical development these days. So people want to use building products made from natural things and take a good effect for people from those bio products. We can instance electron wave shelding, far infrared ray and anion emission, and anti-bacterial property as the latest trend of the bio building material. So we had a experiment to investigate how much bio materials affect concrete when we use in the concrete with cement substitution. We tested slump, 7days compressive strength, and air contents for physical properties of bio concrete. The result is that bio concretes with four bio ingredients have proper values comparing with target values for slump and air content but lower compressive strength than plain concrete.

  • PDF

An Experimental Study on the Engineering Properties of Deteriorated Concrete by Fire Damage According to Design Compressive Strength (화재피해를 입은 콘크리트의 폭렬에 대한 설계기준강도의 영향성 검토에 관한 연구)

  • Na, Chul-Sung;Cho, Bong-Suk;Kim, Jae-Hwan;Kwon, Yung-Jin;Kim, Gyu-Yong;Kim, Moo-Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.465-468
    • /
    • 2006
  • In the existed study, a fire outbreak in a reinforced concrete structure looses the organism by the different contraction and expansion of hardened cement pastes and aggregate, and causes cracks by thermal stress, leading to the deterioration of the durability. So accurate diagnosis of deterioration is needed based on mechanism of fire deterioration in general concrete structures. Fundamental information and data on the properties of concrete exposed to high temperature are necessary for accurate diagnosis of deterioration. Therefore, this study is willing to propose fundamental data for quick and accurate diagnosis of deteriorated concrete structure by fire damage with experiment according to the design compressive strength.

  • PDF

An Experimental Study on the Geopolymer for Wood Wool Ceramic Board (목모 패널용 Geopolymer Binder 개발에 관한 실험적 연구)

  • Park Dong Cheol;Lee Sea Hyun;Song Tae Hyeob;Shim Jong Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.711-714
    • /
    • 2005
  • This paper focused on development of geopolymer for wood wool ceramic board. Geopolymer can substitude ordinary portland cement and its accelerator of wood wool cement board as inorganic polymer. In this study, what we would obtain geopolymer's properties such as initial setting time(KS L 5108), flow(KS L 5102) and compressive strength of 3days aged(KS L 5105), was less than 1 hour, more than $110\%$, more than 40Mpa. Geopolymer have three essential materials called filler, hardener and geopolymer liquor. So, We applied filler by quartz, hardener by blast furnace slag powder, metakaoline and fly ash, geopolymer liquor by NaOH, KOH and sodium silicate solution. As result of this experiment, what we could obtain best fitted geopolymer's properties such as initial setting time, flow and compressive strength of 3days aged, was 45min, $116\%$ and 43.6Mpa. This result can be applicable to commercial wood wool ceramic board.

  • PDF

Numerical Study on Fire Performance of Hollowcore Slabs (할로우코어 슬래브의 내화성능에 대한 수치해석 연구)

  • Min, Jeong-Ki;Woo, Young-Je
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.3
    • /
    • pp.95-102
    • /
    • 2015
  • Numerical model on precast prestressed concrete (PC) hollowcore slabs using 11.3 mm diameter 7-wire stand was developed based on finite element analysis. In order to validate the modelling, previous experiment results with respect to prestressed solid concrete slabs were used and compared throughout the course of fire exposure. In addition to, the fire performance of hollowcore slabs with different aggregate types, moisture contents and compressive strength of concrete was investigated. As a result, it can be seen that the type of aggregates and moisture contents used in hollowcore slabs can affect the fire performance as well as temperature developments.

Study on Phosphate Investment for High Temperature Precision Castings(II);The Effect of MgO on the characteristics of the Investment (고온정밀주조용 인산염계 매몰재에 관한연구(II);매몰재의 특성에 미치는 Mgo의 영향)

  • SunWoo, Jung-Ho;Lee, Jong-Nam
    • Journal of Korea Foundry Society
    • /
    • v.5 no.2
    • /
    • pp.97-108
    • /
    • 1985
  • In order to investigate the effect of magnesia clinker on the characteristics of the investments, temperature change during setting, setting time, compressive strength and thermal expansion of the investments were measured, and x-ray analyses were also performed. The investments were prepared in accordance with variation of the content and the particle size of magnesia clinker respectively. From this experiment, the results were summarized as follows; 1. Temperature of the investments during setting rapidly increased with increase of MgO contents and decrease of the particle size of magnesia clinker. 2. Setting time decreased with increase of MgO contents and decrease of the particle size of magnesia clinker. 3. Compressive strength increased with increase of MgO contents and decrease of the particle size of magnesia clinker. 4. Thermal expansion decreased with increase of MgO contents and decrease of the particle size of magnesia clinker. From the above results, the investment which contains 8% of MgO (270-325mesh) could be recommended for phosphate investment castings.

  • PDF

An Experimental Study on the Highly Heated Concrete by Virtue of Fire (화재에 의해 고열을 받은 콘크리트에 관한 실험적 연구)

  • 김동준
    • Journal of the Korean Society of Safety
    • /
    • v.3 no.1
    • /
    • pp.31-36
    • /
    • 1988
  • We live in the building which made of concreat. If a fire break out in the building on a sudden, the heated concreat structual of the building were become very weak and bad poor. In this study, it was investigated by test for thermal expansibility and compressive strength of the highly heated concreat. The experiment was carried out in the temparature range of 150―75$0^{\circ}C$. The obtained results are as follow. 1. The heated concreat has weaken in compressive strength from about at 30$0^{\circ}C$. 2. The concreat heated over 45$0^{\circ}C$ is not proper for structual material. 3. The concreat expanded remarkable when it was heated about at 450―$600^{\circ}C$.

  • PDF