• Title/Summary/Keyword: Compressive Strength Experiment

Search Result 613, Processing Time 0.026 seconds

Planting-Ability Properties of Porous Concrete as Gradation and Void Ratio (포러스콘크리트의 골재입도 및 공극률에 따른 식생능력평가)

  • 윤덕열;김정환;조영수;표구영;박승범
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.243-248
    • /
    • 2002
  • As a notion of environment protection changes throughout the world, construction engineers, as part of the effort to resolve environmental problems, have been actively doing research on environmental friendly porous concrete using large and non-uniform aggregate. Porous Concrete enables water and air to pass through a firmly hardened material and allows required nutrients to reach roots of plants. The purpose of this study is to analyze planting ability when the change of aggregate gradation and void ratio. The results of an experiment from the planting ability of the porous concrete to its influence on the compressive strength are reported in this paper. As a result of the experiment, the compressive strength is higher when the gradation of aggregate is smaller, and it also goes higher when the void ratio gets smaller The planting ability of porous concrete is decided by the germination and the grass length of Indigofera pseudo-tinctoria(IPT). The length of IPT is longer when the gradation of aggregate is greater and the void ratio gets smaller.

  • PDF

Ultimate Strength of Dented Tubular Members(1st report) -under Axial Loads- (Dent 손상을 갖는 원통부재의 최종강도에 관한 연구(제1보) -축 하중을 받는 경우-)

  • Chun, Tae-Byung;Nho, In-Sik;Cho, Byung-Sam
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.6
    • /
    • pp.48-55
    • /
    • 2004
  • Loads on offshore structures are largely transferred to the bracing members in the form of axial forces. The detrimental effects of imperfections on compressive strength are well recognized. Damage in the members of offshore structures would significantly affect the compressive behavior of the members. As a result, such damages may also affect the ability of the structure to withstand the functional and environmental loads. It is important to be able to assess the residual strength of damaged members quickly and accurately. This will help operators to make the decision whether the member has to be repaired or not. In this study, a series of calculation is performed to study the effects of different parameters on the behavior of such damaged members under axial load. And the results of analysis are compared with those of experiment.

Utilization of Stone Sludge Produced by Stone Block Manufacturing Process as Concrete Admixtures (석재 가공시 발생한 석분슬러지의 콘크리트 혼화재료로의 활용)

  • Jeong, Jin-Seob;Lee, Jong-Cheon;Yang, Keek-Young;So, Kwang-Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.6
    • /
    • pp.83-89
    • /
    • 2008
  • The stone sludge produced during the manufacturing process of stone blocks is considered as one of industrial waste materials. This stone sludge are managed to either burying under the ground or stacking in the yard, but this disposal process is required an extra costs. The stone sludge disposal like burying or stacking also cause environmental pollutions such as ground pollution and subterranean water pollution. Thus, this study was conducted to explore the possibility of recycling of stone dust sludge as a concrete mixing material in order to extend recycling methods and to solve the shortage of aggregate caused by recently increased demand in construction. Based on the experiment results on various ratios of cement to stone sludge content, the compressive strengths of concrete were recorded in the range of $20{\sim}30N/mm2$. The results did not show any decrease in compressive strength due to the stone dust content. It can be concluded that the stone sludge produced by stone block manufacturing can be sufficiently recycled as one of concrete mixing materials in the aspect of compressive strength.

Strength properties of aggregates from various locations in mid-Korea (중부지역 골재원 종류 및 변화에 따른 콘크리트의 강도발현 특성)

  • Kim, Sang-Sup;Lee, Sun-Jea;Park, Yong-Jun;Lee, Myung-Hoo;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.120-121
    • /
    • 2015
  • In this research, to evaluate the influence of using non-KS aggregate on concrete performance, the engineering properties of normal strength concrete were assessed depending on the KS aggregate and non-KS aggregate from various sources in mid-Korea. From the experiment, when the non-KS aggregate was used, low compressive strength was achieved with increased water-to-cement ratio caused by increased unit water due to high absorption rate of the non-KS aggregate.

  • PDF

The properties of High Performance Concrete Using Fly Ash and Blast-Furnace Slag (플라이애쉬 및 고로슬래그를 사용한 고성능콘크리트의 특성)

  • 이승한;정용욱;박정준
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.275-280
    • /
    • 1998
  • In this study, to increase fluidity and resistance of segregation of materials, the effect of each of the materials, which have effects on high performance concrete from investigating the properties of strength and drying shrinkage of high performance concrete made by the basic mix proportion used fly-ash and ground granulated blast-furnace slag after hardening, has been checked. By the results of this experiment, fluidity on W/C=34% was satisfied within slump-flow 65$\pm$5cm and U-type self-compacting difference 5cm. On the properties of strength, high performance concrete produced compressive strength over 400kg/$\textrm{cm}^2$ in 28days when powder was replaced by 40% of fly-ash and 60% of ground granulated blast-furnace slag. And compressive strength was taken over 600kg/$\textrm{cm}^2$ equal to non-replacement in 91days. Also, the length change of concrete with the addition of fly-ash was smaller than that without it. Therefore, it may be effective on the decrease of drying shrinkage volume.

  • PDF

A Study on the Properties of the Repair materials of Concrete Structure (노후화된 콘크리트 구조물 보수재료의 기초물성에 대한 연구)

  • 이창수;김성수;곽도연;이규동
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.867-870
    • /
    • 1998
  • The reinforced concrete structures have been deteriorated for various causes since it serviced for the long time. If we have to service concrete structure long time, we must repair it using appropriate methods and materials. But the data which evaluate the repair material has not been sufficient. So, the aim of this research is to estimate properties of repair materials and to acquire the data which apply to the concrete structures in field. To accomplish this objective, we have made experiment on compressive strength, bond strength, the coefficient of thermal expansion and setting time. Generally, compressive strength and bond strength are favorable but some products are unfavorable under wet curing. Setting time was faster than ordinary portland cement mortar except one material.

  • PDF

The Properties of Foamed Concrete Slurry Using Bottom Ash According to the Methods of Mixing of Foam (기포혼입방법에 따른 바텀애쉬를 사용한 기포 콘크리트의 특성)

  • Kang Cheol;Kang Gi Woong;Kawg Eun Gu;Cho Sung Hyun;Kwon Gi Ju;Kim Jin Man
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.529-532
    • /
    • 2004
  • As the purpose of this study is a research of series to obtain fundamental data on the development of the product of foamed concrete using bottom ash for various applications in the field, the main purpose is the light weight of product of concrete. In this experiment, method of mixing of foam is very important because it control specific gravity and strength of the product. As the test results, it was found that regardless of mixing method the grower the concentration of foaming agent the lower the specific gravity and the compressive strength of the specimen especially pre-foaming method. From a strength point of view, we knew that mix-foaming method and steam curing is efficient to obtain a adequate compressive strength of foamed concrete.

  • PDF

Effect of Early Compressive Strength Development with Blast Furnace Slag Using Various stimulants Mortar. (각종자극제가 고로슬래그 미분말 혼입 모르타르의 초기재령 압축강도 발현에 미치는 영향)

  • kim, Jin-Hyoung;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05a
    • /
    • pp.57-58
    • /
    • 2011
  • In the experiment, we add to NaOH, Ca(OH)2 and Calcium Hydroxide as the Slag stimulus also mixed the cement stimulus such as NaSCN, TEA and CaCl2 for improving compressive strenth of concrete which added the Blast Furnace Slag Powder at 1 and 3 days. In the result of strength test, It showed that 2percentage of activator 1 and 5percentage Ca(OH)2, 1percentage of activator 3 and 5percentage of Ca(OH)2 are higher than 100 percentage OPC.

  • PDF

Properties of Non-cement Matrix Using Biomass Fly Ash (바이오매스 플라이애시를 활용한 무시멘트 경화체의 특성)

  • Kim, Dae-Yeon;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.185-186
    • /
    • 2020
  • This study In order to reduce the amount of cement that generates a large amount of carbon dioxide and attempts to find a recycling method to solve environmental problems by using biomass fly ash. Experiments were conducted according to replacement ratio of biomass fly ash based on GGBFS, The test items are flowability, air content, unit volume weight, water absorption, flexural strength and compressive strength. As a result of the experiment, as increased replacement ratio of biomass fly ash, the flowability and air content was increased. As increased replacement ratio, the density was decreased and water absorption was increased. The compressive strength tended to decrease as increased replacement ratio. The flexural strength tended to increased as increased replacement ratio.

  • PDF

Properties of Compressive Strength of Mortar Based on High-activated Blast Furnace Slag using the Slag by-product as an Activator (슬래그부산물을 자극제로 활용한 고활성 고로슬래그 미분말 모르타르의 압축강도 발현 특성)

  • Lee, Bo-Kyeong;Kim, Gyu-Yong;Koo, Kyung-Mo;Shin, Kyoung-Su
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.1
    • /
    • pp.37-44
    • /
    • 2014
  • Recently, many efforts related to the utilization of industrial by-products have been made to reduce carbon dioxide emissions in the construction industry. Of these various efforts, concrete incorporating ground granulated blast furnace slag (BFS) provides many advantages compared to conventional concrete, such as high long-term compressive strength, improved durability and economic benefits because of its latent hydraulic property, and low compressive strength at early curing age. This paper investigates the compressive strength of high-activated ground granulated blast furnace slag blended mortar with slag by-product S type(SBP-S). The results of the experiment revealed that incorporating high-activated ground granulated blast furnace slag would affect the compressive strength of mortar. It was found that increasing the Blaine fineness and replacement ratio of slag by-product S type shows high compressive strength of mortar at early curing age because of its high $SiO_2$ and CaO contents in the slag. It is confirmed that an increase of curing age does not affect the compressive strength of mortar made with slag by-product S type at a high curing temperature. Moreover, it is possible to develop and design concrete manufactured with high-activated ground granulated blast furnace slag as binder considering the acceleration curing conditions and mix proportions.