• Title/Summary/Keyword: Compressive Fracture Stress

Search Result 232, Processing Time 0.028 seconds

A Study on the Geomorphology and Activity of Jinbu Fault in Pyeongchang-gun, Gangwon Province (강원도 평창군 진부 단층의 지형 및 활동성)

  • Lee, Gwang-Ryul;Cho, Young-Dong;Kim, Dae-Sik
    • Journal of the Korean Geographical Society
    • /
    • v.43 no.6
    • /
    • pp.775-790
    • /
    • 2008
  • This study shows possibility of active fault, throughout analyzing distributional features of tectonic and fluvial geomorphology and mineral composition of fault fracture clay, at Jinbu fault-line system in Pyeongchang-gun, Gangwon Province. Fault-line valley was formed remarkably in the upper reaches of Odae River and upper reaches of Yeongok River according along Jinbu fault-line. Landforms show rectilineal distribution at right shore slopes of Odae River in Ganpyeong-ri, southern zone of Jinbu fault-line system, related to the tectonic processes, such as triangular facet, kernbut, kerncol and alluvial fan. Fault fracture clay zones were developed at 5 outcrops($jbf1{\sim}5$), located in kerncol. Particularly, jbf1 fault outcrop, developed at granite saprolite, has obvious fault plane and fault clay composed of illite and laumontite. The Jinbu Fault-line along jbf4-2-3-5 may be formed by regional compressive stress, and jbf1 fault may be suggested a tributary fault of the Jinbu fault-line formed before the late Pleistocene. The vertical displacement of the east and west blocks of the Jinbu Fault-line is estimated in $0.024{\sim}0.027m/ka$.

A Novel Method for In Situ Stress Measurement by Cryogenic Thermal Cracking - Concept Theory and Numerical Simulation (저온 열균열 현상을 이용한 초기 응력 측정법 - 개념, 이론 및 수치해석)

  • Ryu, Chang-Ha;Ryu, Dong-Woo;Choi, Byung-Hee;Synn, Dong-Ho;Loui, John P.
    • Tunnel and Underground Space
    • /
    • v.18 no.5
    • /
    • pp.343-354
    • /
    • 2008
  • A new method is suggested herein to measure the virgin earth stresses by means of a borehole. This novel concept is basically a combination of borehole stress relieving and borehole fracturing techniques. The destressing of the borehole is achieved by means of inducing thermal tensile stresses at the borehole periphery by using a cryogenic fluid such as Liquid Nitrogen($LN_2$). The borehole wall eventually develops fractures when the induced thermal stresses exceed the existing compressive stresses at the borehole periphery in addition to the tensile strength of the rock. The above concept is theoretically analyzed for its potential applicability to interpret in situ stress levels from the tensile fracture stresses and the corresponding borehole wall temperatures. Coupled thermo-mechanical numerical simulations are also conducted using FLAC3D, with thermal option, to check the validity of the proposed techniques. From the preliminary theoretical and numerical analysis, the method suggested for the measurement of in situ stresses appears to be capable of accurate estimation of the virgin stresses by monitoring tensile crack formation at a borehole wall and recording the wall temperatures at the time of crack initiation.

A Numerical Study on the Behavior of Steel Fiber Reinforced Shotcrete in Consideration of Flexural Toughness (휨인성을 고려한 강섬유보강 숏크리트 거동의 수치해석적 연구)

  • Cho, Byoung-Ouk;You, Kwang-Ho;Kim, Su-Man;Lim, Doo-Chul;Lee, Sang-Don;Park, Yeon-Jun
    • Tunnel and Underground Space
    • /
    • v.17 no.5
    • /
    • pp.411-427
    • /
    • 2007
  • Reliability in tunnel analysis is necessary to accomplish technically sound design and economical construction. For this, a thorough understanding of the construction procedure including the ground-support interaction has to be obtained. This paper describes a proper modelling technique to simulate the behavior of the steel fiber reinforced shotcrete (SFRS) which maintain the supporting capability in post-failure regime. The additional supporting effect of the steel support was also verified by 3-D analyses and a new load distribution factor were proposed. The use of the plastic moment limit (PML) alone can eliminate the occurrence of the awkwardly high tensile stress in the shotcrete and can successfully model the post-peak ductile behavior of the SFRS. But with this method, moment is limited whenever the stress caused by moment reaches tensile strength of the shotcrete irrespective of the stress by axial force. Therefore, it was necessary to find a more comprehensive method which can reflect the influence of the moment and axial force. This can be accomplished by the proper use of "liner element" which is the built-in model in FLAC. In this model, the peak and residual strength as well as the uniaxial compressive strength of the SFRS can be specified. Analyses were conducted with these two models on the 2-lane road tunnels excavated in class IV and V rock mass and results were compared with the conventional elastic beam model. Results showed that both models can reflect the fracture toughness of the SFRS which could not be accomplished by the elastic beam model.

A Study on Stress-Strain Behaviour of Geotube Structure Filled with Silty Sand Under Low Confining Pressure by Triaxial Compression Test (실트질 모래가 충진된 지오튜브 구조체의 저 등방조건에서 삼축압축시험에 의한 응력-변위 거동 연구)

  • Hyeong-Joo, Kim;Tae-Woong, Park;Ki-Hong, Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.4
    • /
    • pp.69-78
    • /
    • 2022
  • Geotextile tubes are widely used to prevent erosion in coastal areas and to replace the backfill for shore slopes in the reclamation of land using dredged soil. In this study, The triaxial confining pressures were chosen as 10kPa, 50kPa, or 100kPa for the specimens reinforced with geotextile considering the condition in the site. The strain behavior under various compressive stresses was then identified. At strains 0% to 7%, the stress-strain behavior was the same due to the effect of initial strain hardening, in which the force was exerted according to the relaxation of the geotextile regardless of the confining pressure (≤100kPa). At strains of 7% or more, the specimen with the small confining pressure had smaller deformation under load, which increases the tensile resistance provided by the reinforcing geotextile. Brittle fracture was then observed due to strain softening and the deviator stress abruptly decreased. This is different from the phenomenon in which the shear strength increases as the confining pressure increases in general triaxial compression tests. In the geoxtile-confined tests, geotextiles are primarily subjected to tensile displacement. Thereafter, the modulus of elasticity increases rapidly, which exhibits the elastic behavior of the geotextile.

A Study on the Resistance and Crack Propagation of ITO/PET Sheet with 20 nm Thick ITO Film (20 nm 두께의 ITO층이 코팅된 ITO/PET Sheet의 저항 및 균열형성 특성 연구)

  • Kim, Jin-Yeol;Hong, Sun-Ig
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.1
    • /
    • pp.86-93
    • /
    • 2009
  • The crack formation and the resistance of ITO film on PET substrate with a thickness of 20 nm were investigated as a function of strain. The onset strain for the increase of resistance increased with increasing strain rate, suggesting the crack initiation is dependent on the strain rate. Electrical resistance increased at the strain of 1.6% at the strain rates below $10^{-4}/sec$ while it increased at ${\sim}2%$ at the strain rates above $10^{-3}/sec$. The critical strain at which the cracks were formed is close to the proportional limit. Upon loading, the initial cracks perpendicular to the tensile axis were observed and propagated the whole sample width with increasing strain. The spacing between horizontal cracks is thought to be determined by the fracture strength and the interfacial strength between ITO and PET. The crack density increased with increasing strain. However, the effect of the strain rate on the crack density was less pronounced in ITO/PET with 20 nm ITO thickness than ITO/PET with 125 nm ITO thickness, the strength of ITO film is thought to increase as the thickness on ITO film decreases. The absence of cracks on ITO film at a strain as close as 1.5% can be attributed to the compressive residual stress of ITO film which was developed during cooling after the coating process. The higher critical strain for the onset of the resistance increase and the crack initiation of ITO/PET with a thinner ITO film (20 nm) can be linked with the higher strength of the thinner ITO film.

Development of Hybrid Fiber-reinforced High Strength Lightweight Cementitious Composite (하이브리드 섬유로 보강한 고강도 경량 시멘트 복합체의 개발)

  • Bang, Jin-Wook;Kim, Jung-Su;Lee, Bang-Yeon;Jang, Young-Il;Kim, Yun-Yong
    • Composites Research
    • /
    • v.23 no.4
    • /
    • pp.35-43
    • /
    • 2010
  • The purpose of this paper is to develop a Hybrid Fiber-reinforced High Strength Lightweight Cementitious Composite (HFSLCC) incorporated with lightweight filler and hybrid fibers for lightness and high ductility. Optimal ingredients and mixture proportion were determined on the basis of the micromechanical analysis and the steady-state cracking theory considering the fracture characteristics of matrix and the interfacial properties between fibers and matrix. Then 4 mixture proportions were determined according to the type and amount of fibers and the experiment was performed to evaluate the mechanical performance of those. The HFSLCC showed 3% of tensile strain, 4.2MPa of ultimate tensile stress, 57MPa of compressive strength and $1,660kg/m^3$ of bulk density. The mechanical performance of HFSLCC incorporated with PVA fibers of 1.0 Vol.% and PE fibers of 0.5 Vol.% is similar to those of the HFSLCC incorporated with fibers of 2.0 Vol.%.

The Retardation Behaviors due to a Single Overload and High-Low Block Loads, and Retardation Model in 7075-T73 Aluminum Alloy (7075-T73 알루미늄 합금의 단일과대 및 고-저블럭하중에 의한 지연거동과 수명예측 모델)

  • 김정규;송달호;박병훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.9
    • /
    • pp.1605-1614
    • /
    • 1992
  • The effects of % overload (% O.L), baseline stress intensity factor range (.DELTA. $K_{b}$) and dimension-less crack depth (a/W) are examined for the retardation behaviors after a single overload and high-low block loads in 7075-T73 aluminum alloy. And wheeler model, which is one of the fatigue life prediction models, is modified to predict retardation life using these test results. The retardation cycles( $N_{d}$) increased with a decrease in a/W and an increase in % O.L. and (.DELTA. $K_{b}$) These effects are more severe after high-low block loads than single overload. In the case of single overload, the main mechanisms of the retardation are the crack closure and the relaxation of K due to crack branching. But in the case of high-low block loads, that of the main mechanism is the crack closure caused by the accumulated compressive residual stree at the crack tip, which is related with the contact of fracture surfaces. Test results were multiple regression analyzed and got regressed shaping correction factors, (n)$_{REG}$, as function of %O.L., a/W and (.DELTA. $K_{b}$) Wheeler model is modified by using these (n)$_{REG}$. The number of delay cycles calculated by modified Wheeler model were in good agreement with the test results of this study.y.udy.y.y.y.

Pullout Behavior Characteristics of Enlarged Cylinder Type Anchor Using Numerical Analysis (수치해석을 이용한 확공형 앵커의 인발거동 특성)

  • Moon, Joon-Shik;Lee, Min-Joo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.113-118
    • /
    • 2017
  • Numerical analysis was carried out using a finite element analysis program to analyze the behavior characteristics of enlarged cylinder type anchor. It was found that the ultimate resistance of enlarged cylinder type anchor increases with the enlargement angle from numerical analysis for various enlargement angle cases. In the case of $30-60^{\circ}$ of enlargement angle, the deformation and stress distribution characteristics in anchor are similar regardless of enlargement angle. However, when the same tensile force is applied, there is a difference in the degree of frictional resistance because of difference of displacement of top of grouting zone. Also, it was found that the maximum compressive force and tensile force were generated at the cone of the upper portion of the grouting zone, and tensile fracture of the upper grouting portion is likely to occur.

Analysis of Crack characteristic on Concrete Cover for Subway Box Structure Due to Reinforcement Corrosion (철근부식으로 인한 지하철 박스구조물의 콘크리트 피복층 균열특성 분석)

  • Choi, Jung-Youl;Shin, Dong-Sub;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.727-732
    • /
    • 2022
  • Applying the calculated cross-sectional reduction due to the corroded rebar investigated in the field to the numerical analysis model, the damage pattern and delamination of concrete in the field showed a tendency relatively similar to the numerical analysis results. It was analyzed that when the expansion pressure due to corrosion of the reinforcing bar is greater than the tensile stress of the concrete, cracks are generated and the concrete cover can be fracture. As a result of this study, the correlation between the corrosion rate of reinforcing bars and the crack occurrence of the concrete cover of the subway box structure was verified based on the numerical analysis and field test results. To prevent rebar corrosion, the corrosion rate can be reduced by applying rust prevention to the reinforcing bar and changing the material. In the case of exposed to a corrosive environment, the tensile strength of the concrete is improved by adjusting the concrete compressive strength to secure durability against the expansion pressure caused by the corroded rebar.

Performance Evaluation of Bending Strength of Curved Composite Glulams Made of Korean White Pine (잣나무 만곡 복합집성재의 휨강도 성능평가)

  • Song, Yo-Jin;Jung, Hong-Ju;Lee, In-Hwan;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.4
    • /
    • pp.463-469
    • /
    • 2015
  • In this study, to improve bending strength performance of Korean white pine, we made the curved composite glulam that was reinforced with glass fiber materials and larch lamina. Five types of Korean white pine curved glulams were made depending on whether they had been reinforced or not and how they had been reinforced. Type-A, reference specimen, was produced only with Korean white pine lamina, and Type-B was with larch lamina in the same thickness. Type-C was made by inserting a glass fiber cloth of textile shape between the each layer. Type-D was reinforced with two glass fiber cloths, which were placed inside and outside of the outermost lamina. Type-E was reinforced with GFRP sheet in the same way as Type-D. As a result of this bending strength test, the modulus of rupture (MOR) of Type-B, Type-C and Type-E were increased by 29%, 6%, and 48% in comparison with Type-A. However, MOR of Type-D was decreased by 2% in comparison with Type-A. In the failure modes, Type-A, Type-B and Type-C were totally fractured at the maximum load. However, load values of Type-D and Type-E decreased slowly because of reinforcement of fracture suppression, and the GFRP sheet (Type-E) had better reinforcing effect on compressive stress and tensile stress than the glass fiber cloth (Type-D).