• Title/Summary/Keyword: Compression Set

Search Result 396, Processing Time 0.025 seconds

Effects of Chlorobutyl Rubber Content on the Mechanical Properties of Chlorobutyl Rubber Blends (클로로부틸 고무 함량이 클로로부틸 고무 블렌드물의 기계적 물성에 미치는 영향)

  • Park, Cha-Cheol;Pyo, Kyung-Duk
    • Elastomers and Composites
    • /
    • v.45 no.4
    • /
    • pp.280-285
    • /
    • 2010
  • The CIIR blends with SBR, NBR and BR were prepared with various mixing ratios. The mechanical and physical properties of these blends, such as frictional coefficient, abrasion resistance, compression set, and specific gravity, were measured. In the permanent compression set measurement, the blends at the composition of 75 wt% CIIR showed the highest value, which means the lowest resistance to deformation. As SBR, NBR and BR blends with CIIR, the coefficient of friction of the mixtures showed a tendency to decrease in arithmetic average. In the case of blending CIIR with BR in order to increase the friction force, the negative effect due to reduction in abrasion resistance was greater than the positive effect of the improvement of the traction force caused by increasing friction coefficient.

3-D Lossy Volumetric Medical Image Compression with Overlapping method and SPIHT Algorithm and Lifting Steps (Overlapping method와 SPIHT Algorithm과 Lifting Steps을 이용한 3차원 손실 의료 영상 압축 방법)

  • 김영섭
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.4 no.3
    • /
    • pp.263-269
    • /
    • 2003
  • This paper focuses on lossy medical image compression methods for medical images that operate on three-dimensional(3D) irreversible integer wavelet transform. We offer an application of the Set Partitioning in Hierarchical Trees(SPIHT) algorithm〔l-3〕to medical images, using a 3-D wavelet decomposition and a 3-D spatial dependence tree. The wavelet decomposition is accomplished with integer wavelet filters implemented with the lifting method, where careful scaling and truncations keep the integer precision small and the transform unitary. As the compression rate increases, the boundaries between adjacent coding units become increasingly visible. Unlike video, the volume image is examined under static condition, and must not exhibit such boundary artifacts. In order to eliminate them, we utilize overlapping at axial boundaries between adjacent coding units. We have tested our encoder on medical images using different integer filters. Results show that our algorithm with certain filters performs as well. The improvement is visibly manifested as fewer ringing artifacts and noticeably better reconstruction of low contrast.

  • PDF

Compression of Medical Images Using DWT (DWT을 이용한 의료영상 압축)

  • Lim, Jae-Dong;Lee, Sang-Bock
    • Journal of the Korean Society of Radiology
    • /
    • v.2 no.2
    • /
    • pp.11-16
    • /
    • 2008
  • The most difficult of implementation PACS is large amount of data. Therefore, PACS needs mass storage, as well as rapid transmission time. Consequently, medical images needs compression when stored in PACS. WT(wavelet transform) was announced by Ingrid Daubechies and Stephane Mallat, WT was methods of signal analysis by a base functions set same as Fourie transform. This paper estimated an efficiency, that experimental medical images compressed by DWT. The result of estimated, we are knows effectiveness that display to remained signal in low frequency region after 4-level DWT form $512{\times}512{\times}2^8$ input images. Compression ratio of images by 4-level DWT was 1:16. It is a high compression ratio, the other side has a problem appears on staircase phenomenon.

  • PDF

A Study on the Compression Efficiency of a Digital Hologram Video using Domain Transforms and H.265/HEVC (도메인 변환 및 H.265/HEVC를 이용한 디지털 홀로그램 비디오의 압축효율에 대한 연구)

  • Jang, Su-Jin;Seo, Young-Ho;Kim, Dong-Wook
    • Journal of Broadcast Engineering
    • /
    • v.21 no.4
    • /
    • pp.592-608
    • /
    • 2016
  • Recently, many researches on digital holograms, which retain almost perfect 3 dimensional image information, have been performed actively that it seems for them to be serviced soon. Accordingly, this paper proposes a data compression technique for a digital hologram video for this service. It uses H.265/HEVC, the most recent international 2 dimensional video compression standard, for which we consider various domain transform methods to increase the correlation among the pixels in a digital hologram. Also we consider the various parameters on H.265/HEVC. The purpose of this paper is to find empirically the optimal condition for the domain transform method, the size of transform unit, and the H.265/HEVC parameters. The proposed method satisfying the optimal parameter set found is compared to the existing methods to prove that ours shows better performance.

Hardness and Dimensional Stability of Radiata Pine (Pinus radiata D.Don) Heat-Compressed Wood - Effect of Press Temperature & Time - (라디에타소나무 열압밀화 목재의 경도와 치수안정성 - 압체 온도와 시간의 영향 -)

  • Hwang, Sung-Wook;Lee, Won-Hee
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.3
    • /
    • pp.206-212
    • /
    • 2011
  • It was investigated the hardness and dimensional stability of heat-compressed wood by compression temperature and time. The surface hardness of heat-compressed wood increased with increasing compression temperature. The lowest hardness value (5.0 N/$mm^2$) was observed in the temperature $70^{\circ}C$ while the highest value (15.6 N/$mm^2$) was obtained in compression temperature $220^{\circ}C$. Dimensional recovery test results showed that fixation of compression set improved with increasing compression temperature. However, the fixation effects were negligible by press time. Contact angle increased with increasing press temperature and time.

Hardness and Dimensional Stability of Thermally Compressed Domestic Korean Pine (국내산 잣나무 열압밀화재의 경도와 치수안정성)

  • Hwang, Sung-Wook;Cho, Beom-Geun;Lee, Won-Hee
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.1
    • /
    • pp.68-75
    • /
    • 2015
  • We conducted a thermal compression of domestic Korean pinewood for a use in flooring. For the evaluation of flooring material, we measured dimensional stability and surface hardness of thermally compressed wood. It is possible to make high-specific gravity woods with a range of 0.82-0.92 after the thermal compression with 50% compression set. The surface hardness increased with an increase in the pressing temperature. The highest value of surface hardness was $23.6N/mm^2$, which was obtained from the thermal compressed wood with pressing temperature of $160^{\circ}C$ and 30 minutes of pressing time. However, the surface hardness of woods treated at high temperature of $180^{\circ}C$ or greater decreased. The recovery of thickness decreased with increasing the pressing temperature. For dimensional stability, compression temperature was more dominant than compression time.

Analysis of Compression and Cushioning Behavior for Specific Molded Pulp Cushion

  • Jongmin Park;Gihyeong Im;Kyungseon Choi;Eunyoung Kim;Hyunmo Jung
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.30 no.1
    • /
    • pp.53-62
    • /
    • 2024
  • Molded pulp products has become more attractive than traditional materials such as expanded polystyrene foam (EPS) owing to low-priced recycled paper, environmental benefits such as biodegradability, and low production cost. In this study, various design factors regarding compression and cushioning characteristics of the molded pulp cushion with truncated pyramid-shaped structural units were analyzed using a test specimen with multiple structural units. The adopted structural factors were the geometric shape, wall thickness, and depth of the structural unit. The relative humidity was set at two levels. We derived the cushion curve model of the target molded pulp cushion using the stress-energy methodology. The coefficient of determination was approximately 0.8, which was lower than that for EPS (0.98). The cushioning performance of the molded pulp cushion was affected more by the structural factors of the structural unit than by the material characteristics. Repeated impacts, higher static stress, and drop height decreased the cushioning performance. Its compression behavior was investigated in four stages: elastic, first buckling, sub-buckling, and densification. It had greater rigidity during initial deformation stages; then, during plastic deformation, the rigidity was greatly reduced. The compression behavior was influenced by structural factors such as the geometric shape and depth of the structural unit and environmental conditions, rather than material properties. The biggest difference in the compression and cushioning characteristics of molded pulp cushion compared to EPS is that it is greatly affected by structural factors, and in addition, strength and resilience are expected to decrease due to humidity and repetitive loads, so future research is needed.

THE REACTION OF BONE REGENERATE TO THE VARIOUS FORCE RATIO AND PERIODS ON DISTRACTION OSTEOGENESIS WITH COMBINED DISTRACTION FORCE AND COMPRESSION FORCE (수축력과 신장력을 병용한 골신장술에서의 다양한 힘의 비와 부여시기에 따른 신연골 반응)

  • Kim, Uk-Kyu;Shin, Sang-Hun;Chung, In-Kyo;Kim, Cheol-Hun;Huo, Jun;Yun, Il
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.27 no.5
    • /
    • pp.403-414
    • /
    • 2005
  • The purpose of this study was to identify the effectiveness of the modified distraction osteogenesis (DO) method with the concept of overdistraction and compression stimulation which have been previously suggested by the authors in 2002 and to explore the optimal distraction-compression ratio and appropriate latency period for the compression force application during consolidation. The experimental specimens were assessed with radiography, histologic findings, and dual energy x-ray absorptiometry (DEXA) after the conventional DO method and the modified DO technique had been applied on rat mandibles. Total 60 rats were used for the study. In experimental group of 54 adult rats, mandibular osteotomies between the first and second molar areas were performed and customized external distractors were applied. The surgeries on 6 rats of control group also were done with same osteotomy technique and DO device application. Final amount of distraction was set-up as 2 mm on both groups. But, in a experimental group of 54 rats, distraction osteogenesis with a compression force were performed with the different distraction-compression ratio and variant latency periods for compression. The three ratio-subgroups were made as distraction 4 mm group with compression 2 mm, distraction 3 mm group with compression 1 mm, and distraction 2.5 mm group with compression 0.5 mm. In addition, The three subgroups with 3, 7, 11 days latency period prior compression were allocated on each ratio-subgroups. Total 9 subgroups consisted of 6 rats on each subgroup. In control group of 6 rats, conventional distraction technique were routinely performed. The rats of control groups were sacrificed on postoperative 3, 6 weeks after 2 mm distraction. The rats in the experimental groups also were sacrificed on the same euthanasia days of control groups to compare the wound healing. Final available specimens were 55 rats except 5 due to osteomyelitis, device dislodgement. Distraction-compression combined group on 6 weeks generally had showed increased bone mineral density than the same period group of conventional distraction technique on the DEXA study. More matured lamellar bone state and extended trabecular pattern in the combined group than those of control group were also observed in the histologic findings on 6 weeks. In the distraction-compression combined groups, the bone density of 2.5 mm distraction subgroups with 0.5 mm compression showed the highest value on the DEXA study among various force ratio groups. In the distraction-compression combined groups, the bone density of 3 day latency period subgroups showed the highest value on the DEXA study among various latency period groups for the compression application. From this study, we could deduce that 1/5 force ratio for the compression versus distraction, 3 day latency period prior compression application would be the most effective condition if modified distraction osteogenesis technique might be applicable. The modified DO method with a compression force may improve the quality of bone regenerate and shorten total treatment period in comparison with conventional DO technique clinically.

Multispectral Image Data Compression Using Classified Prediction and KLT in Wavelet Transform Domain

  • Kim, Tae-Su;Kim, Seung-Jin;Kim, Byung-Ju;Lee, Jong-Won;Kwon, Seong-Geun;Lee, Kuhn-Il
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.204-207
    • /
    • 2002
  • The current paper proposes a new multispectral image data compression algorithm that can efficiently reduce spatial and spectral redundancies by applying classified prediction, a Karhunen-Loeve transform (KLT), and the three-dimensional set partitioning in hierarchical trees (3-D SPIHT) algorithm In the wavelet transform (WT) domain. The classification is performed in the WT domain to exploit the interband classified dependency, while the resulting class information is used for the interband prediction. The residual image data on the prediction errors between the original image data and the predicted image data is decorrelated by a KLT. Finally, the 3D-SPIHT algorithm is used to encode the transformed coefficients listed in a descending order spatially and spectrally as a result of the WT and KLT. Simulation results showed that the reconstructed images after using the proposed algorithm exhibited a better quality and higher compression ratio than those using conventional algorithms.

  • PDF

A Development of Intersecting Tensegrity System and Analysis of Structural Features for Forming Space (관입형 텐서그리티 구조시스템의 개발 및 공간구축을 위한 구조특성 분석)

  • Lee, Juna;Miyasato, Naoya;Saitoh, Masao
    • Journal of Korean Association for Spatial Structures
    • /
    • v.14 no.4
    • /
    • pp.55-64
    • /
    • 2014
  • In this study, Intersecting Tensegrity System that is integrated solid compression members with tension members was presented. This system is set up by connecting upper and lower compression members of pyramid shape with exterior tension members. In this system, the solid compression members are intersected each other and connected by a tension member in the center. This system is a variation of Tensegrity system, has a improved feature that the system is able to induce prestresses in all of tension members easily by adjusting the distance of a tension member in the center. The proposed system was studied by modeling, and the structural behavior of the system was investigated by mechanical analysis of the model. Furthermore, the features of the structural behavior variations was investigated when the composition elements(total height, size of surface, intersection length, etc.) are changed variously. It was also showed that the system is able to be used as a temporary space structure system with a membrane roof of inverse conical shape.