DOI QR코드

DOI QR Code

Hardness and Dimensional Stability of Thermally Compressed Domestic Korean Pine

국내산 잣나무 열압밀화재의 경도와 치수안정성

  • Hwang, Sung-Wook (Department of Wood Science & Technology, College of Agriculture & Life Sciences, Kyungpook National University) ;
  • Cho, Beom-Geun (Department of Wood Science & Technology, College of Agriculture & Life Sciences, Kyungpook National University) ;
  • Lee, Won-Hee (Department of Wood Science & Technology, College of Agriculture & Life Sciences, Kyungpook National University)
  • 황성욱 (경북대학교 농업생명과학대학 임산공학과) ;
  • 조범근 (경북대학교 농업생명과학대학 임산공학과) ;
  • 이원희 (경북대학교 농업생명과학대학 임산공학과)
  • Received : 2014.10.15
  • Accepted : 2014.11.07
  • Published : 2015.01.25

Abstract

We conducted a thermal compression of domestic Korean pinewood for a use in flooring. For the evaluation of flooring material, we measured dimensional stability and surface hardness of thermally compressed wood. It is possible to make high-specific gravity woods with a range of 0.82-0.92 after the thermal compression with 50% compression set. The surface hardness increased with an increase in the pressing temperature. The highest value of surface hardness was $23.6N/mm^2$, which was obtained from the thermal compressed wood with pressing temperature of $160^{\circ}C$ and 30 minutes of pressing time. However, the surface hardness of woods treated at high temperature of $180^{\circ}C$ or greater decreased. The recovery of thickness decreased with increasing the pressing temperature. For dimensional stability, compression temperature was more dominant than compression time.

국내산 잣나무재의 바닥재로의 이용을 위해 열압밀화를 실시하였다. 재질평가로서 표면경도와 치수안정성을 조사하였다. 압축률 50%로 열압밀화를 실시하여 비중 0.82~0.92의 고비중재를 얻을 수 있었다. 열압온도의 증가와 함께 표면경도는 증가하였으며, 온도 $160^{\circ}C$에서 30분간 열압밀화 한 시험편의 표면경도는 $23.6N/mm^2$로서 가장 높은 값을 나타내었다. 그러나 $180^{\circ}C$ 이상의 고온에서는 목재표면의 열분해에 의해 오히려 경도가 감소하였다. 열압온도의 증가는 치수회복률의 감소를 야기하였으며, 열압온도 $200^{\circ}C$에서는 14.9%로 가장 낮은 치수회복률을 나타내었다. 열압시간의 증가 또한 치수회복률 감소에 영향을 미치지만 열압온도에 의한 영향이 더욱 지배적이었다.

Keywords

References

  1. Asako, Y., Kamikoga, H., Nishimura, H., Yamaguchi, Y. 2002. International Journal of Heat and Mass Transfer 45: 2243-2253. https://doi.org/10.1016/S0017-9310(01)00330-1
  2. Hwang, S.W., Lee, W.H. 2011a. The Mechanical Properties of Heat-Compressed Radiata Pine (Pinus radiata D.Don) by Compression Set. Journal of The Korean Wood Science and Technology 39(4): 311-317. https://doi.org/10.5658/WOOD.2011.39.4.311
  3. Hwang, S.W., Lee, W.H. 2011b. Hardness and Dimensional Stability of Radiata Pine (Pinus radiata D.Don) Heat-Compressed Wood - Effect of Press Temperature & Time. Journal of The Korean Wood Science and Technology 39(3): 206-212. https://doi.org/10.5658/WOOD.2011.39.3.206
  4. Inoue, M., Norimoto, M., Tanahashi, M., Rowell, R.M. 1993. Steam or Heat Fixation of Compressed Wood 25(3): 224-235.
  5. Jung, S.S., Lee, W.H. 1998. Characteristics of Moisture Absorption for Heat-Compressed Wood. Journal of the Korea furniture Society 9(1): 9-15.
  6. Kang, H.Y. 2008. Hygroscopicity and Surface Hardness of Domestic Wood Heat-Treated at $220^{\circ}C$. Journal of the Korea furniture Society 19(4): 229-310.
  7. Korea Forest Service. 2013. Statistical Yearbook of Forestry.
  8. Korean Standard Association. 2004. KS F 2212. Method of hardness test for wood.
  9. Korean Standard Association. 2009. KS F 2204. Method of test for water absorption of wood.
  10. Kwon, S.M., Hwang, W.J., Kwon, G.J., Kim, N.H. 2004. Wood quality of Pinus koraiensis and Larix kaempferi. J. For. Sci., Kangwon Nat'l Univ. 20: 170-181.
  11. Lee, W.H., Han, K.S. 2000. Fixation of Compression Set of Heat-Compressed Wood by Steaming. Journal of the Korea furniture Society 11(1): 85-90.
  12. Park, Y. 2012. Improvement of Thermal Performance of Laminate Flooring for Reduction of Building Heating Energy. M.Sc., thesis. Soongsil University, Korea.
  13. Park, Y., Eom, C.D., Park, J.H., Chang, Y.S., Kim, K.M., Kang, C., Yeo, H. 2012. Evaluation of Physical Properties of Korean Pine (Pinus koraiensis Siebold & Zucc.) Lumber Heat-Treated by Superheated Steam. Journal of the Korean wood science and technology 40(4): 257-267. https://doi.org/10.5658/WOOD.2012.40.4.257
  14. Takahashi, M., Sakagami, Hiroki., Fujimoto, N., Hermawan, A. 2013. Simple Compression Processing for Improvement of the Surface Hardness of Sugi. Mokuzai Gakkaishi 59(2): 97-104. https://doi.org/10.2488/jwrs.59.97
  15. Unsal, O., Cadan, Z. 2008. Moisture Content, Vertical Density Profile and Janka Hardness of Thermally compressed Pine Wood Panels as a Function of Press Pressure and Temperature. Drying Technology 26: 1165-1169. https://doi.org/10.1080/07373930802266306

Cited by

  1. Change of Dimensional Stability of Thermally Compressed Korean Pine (Pinus koraiensis Sieb. et Zucc.) Wood by Heat Treatment vol.43, pp.4, 2015, https://doi.org/10.5658/WOOD.2015.43.4.470