DOI QR코드

DOI QR Code

Moment Resistance Performance Evaluation of Larch Glulam Joint Bonded in Glass Fiber Reinforced Plastic Rods

봉형 GFRP를 삽입접착한 낙엽송 집성재 접합부의 모멘트저항 성능 평가

  • Lee, In-Hwan (Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University) ;
  • Song, Yo-Jin (Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University) ;
  • Jung, Hong-Ju (Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University) ;
  • Hong, Soon-Il (Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University)
  • 이인환 (강원대학교 산림환경과학대학 산림바이오소재공학과) ;
  • 송요진 (강원대학교 산림환경과학대학 산림바이오소재공학과) ;
  • 정홍주 (강원대학교 산림환경과학대학 산림바이오소재공학과) ;
  • 홍순일 (강원대학교 산림환경과학대학 산림바이오소재공학과)
  • Received : 2014.09.15
  • Accepted : 2014.10.21
  • Published : 2015.01.25

Abstract

In order to evaluate the bond performance of domestic larch glulam and the glass fiber reinforced plastic (GFRP) rod, the specimen with the GFRP rod bonded-in domestic larch glulam for pull-out test was produced. The test was carried out using various specimens with different gluing depth, width of glue-line and type of adhesive. The cantilever type rahmen structure specimen with bonded-in GFRP rods was produced based on the result of pull-out test, and its moment resistance performance was compared and examined with the moment resistance performance of slotted-in steel plate specimen. As a result of the pull-out test, the most excellent bond performance was found when the insertion depth of GFRP rods was 5 times larger than the diameter of GFRP rods. When the glue-line thickness was 1 mm, the bond performance improved by 17%~29% in comparison to the bond performance in the case of the glue-line thickness of 2 mm. Also, the bonded strength of the specimen used with poly-urethane adhesive was 2.9~4.0 times greater than the bonded strength of specimen used with resorcinol adhesive. The cantilever type rahmen structure specimen with bonded-in GFRP rods showed the moment resistance performance 0.82 times lower in comparison to the slotted-in steel plate specimen used with the drift pin, but the initial stiffness was similar as 0.93 times.

국내산 낙엽송 집성재와 봉형 GFRP의 접착성능을 평가하기 위해 집성재에 선공을 한 후 봉형 GFRP를 삽입하고 접착제로 목재와의 간극을 충진시켜 인발시험편을 제작하였다. 인발시험편은 접착 깊이, 접착층 두께, 접착제 종류를 다르게 적용하여 실험하였다. 봉형 GFRP를 삽입접착한 캔틸레버형 라멘구조 시험체는 인발시험 결과를 토대로 제작, 강판삽입형 시험체와 모멘트 저항 성능을 비교검토 하였다. 인발시험결과 봉형 GFRP의 삽입깊이가 봉형 GFRP 직경의 5배일 때 가장 우수한 접착력이 측정되었으며, 접착층 두께는 1 mm일 경우 2 mm일 때보다 17%~29% 향상된 접착력이 측정되었다. 또한 폴리우레탄(poly-urethane) 접착제를 사용한 시험편이 레조시놀(resorcinol) 접착제를 사용한 시험편보다 2.9~4.0배 높은 성능을 발휘하였다. 봉형 GRFP로 접합한 캔틸레버형 라멘구조 시험체는 드리프트 핀을 사용한 강판삽입형 시험체와 비교하여 평균 0.82배 낮은 모멘트 저항 성능이 측정되었지만 초기강성은 0.93배로 대등한 성능을 보였다.

Keywords

References

  1. Broughton, J.G., Hutchinson, A.R. 2001. Pull-out behaviour of steel rods bonded into timber. Mater Struct. 34(236): 100-109. https://doi.org/10.1007/BF02481558
  2. Harvey, K., Ansell, M.P. 2000. Improved timber connetions using bonded-in GFRP rdos. In: Proceedings of International Timber Engineering Conference, Vancouver, July-August. Poster 4.
  3. Jeon, S.H., Shon, B.L., Kim, C.H., Jang, H.S. 2012. A Fundamental Study for the Behavior of Lightweight Aggregate Concrete Slab Reinforced with GFRP Bar. Korea Concrete Institute: 99-108.
  4. Kim, K.H., Hong., S.I. 2008. Bearing Properties of Domestic Larix Glulam. Journal of The Korean wood science and technology. v.36 no.4: 93-101.
  5. Laura, D.L., Vincenza, S., Antonio, L.T. 2005. Analytical and experimental study on bonded-in CFRP bars in glulam timber. Composites: Part B 36: 279-289.
  6. Madhoushi, M., Ansell, M.P. 2008. Behaviour of timber connections using glued-in GFRP rods under fatigue loading. Part II: Moment-resisting connections. Composites: Part B 39: 249-257. https://doi.org/10.1016/j.compositesb.2006.11.002
  7. Madhoushi, M., Ansell, M.P. 2004. Experimental study of static and fatigue strengths of pultruded GFRP rods bonded into LVL and glulam. International Journal of Adhesion & Adhesives 24: 319-325. https://doi.org/10.1016/j.ijadhadh.2003.07.004
  8. Park, Y.H., Choi, Y. 2013. Flexural Behaviors of GFRP Rebars Reinforced Concrete Beam under Accelerated Aging Environments. Korea Concrete Institute: 137-144.
  9. Statistical yearbook of forestry 2013. Korea forest service.
  10. Soltis L. A. and Wilkinson, T. L. 1987. FRL General Tech. Rep. FRL-GTR54, FPL: 1-21.
  11. Yoon, S.S., 2000. A Study on the Synthesis and Modification of Aqueous Polyurethane Adhesive. Department of Chemical Engineering. p. 64.
  12. You, Y.J., Kim, J.H., Park, Y.H., Park, J.S. 2012. Enhancemets in Performance and Manufacturing Efficiencies of GFRP Rebar. Korea institute for Structural Maintenance Inspection 16(1): 110-119. https://doi.org/10.11112/jksmi.2012.16.1.110
  13. You, Y.J., Park, Y.H., Kim, H.Y., Choi, J.W., Kim, J.H. 2013. Creep Behavior of Pultruded Ribbed GFRP Rebar and GFRP Reinforced Concrete Member. Korea Concrete Institute 25(2): 187-194. https://doi.org/10.4334/JKCI.2013.25.2.187

Cited by

  1. Lateral Load Performance Evaluation of Larch Glulam Portal Frames Using GFRP-Reinforced Laminated Plate and GFRP Rod vol.44, pp.1, 2016, https://doi.org/10.5658/WOOD.2016.44.1.30
  2. Moment Resistance Performance Evaluation of Larch Glulam Joints using GFRP-reinforced Laminated Plate and GFRP Rod vol.44, pp.1, 2016, https://doi.org/10.5658/WOOD.2016.44.1.40