• Title/Summary/Keyword: Compression Algorithm

Search Result 1,096, Processing Time 0.024 seconds

Real-time Optimized Composition and Broadcasting of Multimedia Information (다중 미디어 정보의 실시간 최적화 합성 및 방송)

  • Lee, Sang-Yeob;Park, Seong-Won
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.2
    • /
    • pp.177-185
    • /
    • 2012
  • In this paper, we developed the composition system that it can efficiently edit camera recording data, images, office document such as powerpoint data, MS word data etc in real-time and broadcasting system that the file is made by the composition system. In this Study, we developed two kinds of algorithm; Approximate Composition for Optimization (ACFO) and Sequence Composition using Memory Que (SCUMQ). Especially, the system is inexpensive and useful because the system is based on mobile devices and PCs when lectures hope to make video institutional contents. Therefore, it can be contributed for e-learning and m-learning. In addition, the system can be applied to various fields, different kinds of multimedia creation, remote conferencing, and e-commerce.

A RST Resistant Logo Embedding Technique Using Block DCT and Image Normalization (블록 DCT와 영상 정규화를 이용한 회전, 크기, 이동 변환에 견디는 강인한 로고 삽입방법)

  • Choi Yoon-Hee;Choi Tae-Sun
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.15 no.5
    • /
    • pp.93-103
    • /
    • 2005
  • In this paper, we propose a RST resistant robust logo embedding technique for multimedia copyright protection Geometric manipulations are challenging attacks in that they do not introduce the quality degradation very much but make the detection process very complex and difficult. Watermark embedding in the normalized image directly suffers from smoothing effect due to the interpolation during the image normalization. This can be avoided by estimating the transform parameters using an image normalization technique, instead of embedding in the normalized image. Conventional RST resistant schemes that use full frame transform suffer from the absence of effective perceptual masking methods. Thus, we adopt $8\times8$ block DCT and calculate masking using a spatio-frequency localization of the $8\times8$ block DCT coefficients. Simulation results show that the proposed algorithm is robust against various signal processing techniques, compression and geometrical manipulations.

Dynamic Reconstruction Algorithm of 3D Volumetric Models (3D 볼류메트릭 모델의 동적 복원 알고리즘)

  • Park, Byung-Seo;Kim, Dong-Wook;Seo, Young-Ho
    • Journal of Broadcast Engineering
    • /
    • v.27 no.2
    • /
    • pp.207-215
    • /
    • 2022
  • The latest volumetric technology's high geometrical accuracy and realism ensure a high degree of correspondence between the real object and the captured 3D model. Nevertheless, since the 3D model obtained in this way constitutes a sequence as a completely independent 3D model between frames, the consistency of the model surface structure (geometry) is not guaranteed for every frame, and the density of vertices is very high. It can be seen that the interconnection node (Edge) becomes very complicated. 3D models created using this technology are inherently different from models created in movie or video game production pipelines and are not suitable for direct use in applications such as real-time rendering, animation and simulation, and compression. In contrast, our method achieves consistency in the quality of the volumetric 3D model sequence by linking re-meshing, which ensures high consistency of the 3D model surface structure between frames and the gradual deformation and texture transfer through correspondence and matching of non-rigid surfaces. And It maintains the consistency of volumetric 3D model sequence quality and provides post-processing automation.

Novel Secure Hybrid Image Steganography Technique Based on Pattern Matching

  • Hamza, Ali;Shehzad, Danish;Sarfraz, Muhammad Shahzad;Habib, Usman;Shafi, Numan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.3
    • /
    • pp.1051-1077
    • /
    • 2021
  • The secure communication of information is a major concern over the internet. The information must be protected before transmitting over a communication channel to avoid security violations. In this paper, a new hybrid method called compressed encrypted data embedding (CEDE) is proposed. In CEDE, the secret information is first compressed with Lempel Ziv Welch (LZW) compression algorithm. Then, the compressed secret information is encrypted using the Advanced Encryption Standard (AES) symmetric block cipher. In the last step, the encrypted information is embedded into an image of size 512 × 512 pixels by using image steganography. In the steganographic technique, the compressed and encrypted secret data bits are divided into pairs of two bits and pixels of the cover image are also arranged in four pairs. The four pairs of secret data are compared with the respective four pairs of each cover pixel which leads to sixteen possibilities of matching in between secret data pairs and pairs of cover pixels. The least significant bits (LSBs) of current and imminent pixels are modified according to the matching case number. The proposed technique provides double-folded security and the results show that stego image carries a high capacity of secret data with adequate peak signal to noise ratio (PSNR) and lower mean square error (MSE) when compared with existing methods in the literature.

An Embedded Text Index System for Mass Flash Memory (대용량 플래시 메모리를 위한 임베디드 텍스트 인덱스 시스템)

  • Yun, Sang-Hun;Cho, Haeng-Rae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.6
    • /
    • pp.1-10
    • /
    • 2009
  • Flash memory has the advantages of nonvolatile, low power consumption, light weight, and high endurance. This enables the flash memory to be utilized as a storage of mobile computing device such as PMP(Portable Multimedia Player). Potable device with a mass flash memory can store various multimedia data such as video, audio, or image. Typical index systems for mobile computer are inefficient to search a form of text like lyric or title. In this paper, we propose a new text index system, named EMTEX(Embedded Text Index). EMTEX has the following salient features. First, it uses a compression algorithm for embedded system. Second, if a new insert or delete operation is executed on the base table. EMTEX updates the text index immediately. Third, EMTEX considers the characteristics of flash memory to design insert, delete, and rebuild operations on the text index. Finally, EMTEX is executed as an upper layer of DBMS. Therefore, it is independent of the underlying DBMS. We evaluate the performance of EMTEX. The Experiment results show that EMTEX can outperform th conventional index systems such as Oracle Text and FT3.

Deep learning-based AI constitutive modeling for sandstone and mudstone under cyclic loading conditions

  • Luyuan Wu;Meng Li;Jianwei Zhang;Zifa Wang;Xiaohui Yang;Hanliang Bian
    • Geomechanics and Engineering
    • /
    • v.37 no.1
    • /
    • pp.49-64
    • /
    • 2024
  • Rocks undergoing repeated loading and unloading over an extended period, such as due to earthquakes, human excavation, and blasting, may result in the gradual accumulation of stress and deformation within the rock mass, eventually reaching an unstable state. In this study, a CNN-CCM is proposed to address the mechanical behavior. The structure and hyperparameters of CNN-CCM include Conv2D layers × 5; Max pooling2D layers × 4; Dense layers × 4; learning rate=0.001; Epoch=50; Batch size=64; Dropout=0.5. Training and validation data for deep learning include 71 rock samples and 122,152 data points. The AI Rock Constitutive Model learned by CNN-CCM can predict strain values(ε1) using Mass (M), Axial stress (σ1), Density (ρ), Cyclic number (N), Confining pressure (σ3), and Young's modulus (E). Five evaluation indicators R2, MAPE, RMSE, MSE, and MAE yield respective values of 0.929, 16.44%, 0.954, 0.913, and 0.542, illustrating good predictive performance and generalization ability of model. Finally, interpreting the AI Rock Constitutive Model using the SHAP explaining method reveals that feature importance follows the order N > M > σ1 > E > ρ > σ3.Positive SHAP values indicate positive effects on predicting strain ε1 for N, M, σ1, and σ3, while negative SHAP values have negative effects. For E, a positive value has a negative effect on predicting strain ε1, consistent with the influence patterns of conventional physical rock constitutive equations. The present study offers a novel approach to the investigation of the mechanical constitutive model of rocks under cyclic loading and unloading conditions.

Hybrid machine learning with moth-flame optimization methods for strength prediction of CFDST columns under compression

  • Quang-Viet Vu;Dai-Nhan Le;Thai-Hoan Pham;Wei Gao;Sawekchai Tangaramvong
    • Steel and Composite Structures
    • /
    • v.51 no.6
    • /
    • pp.679-695
    • /
    • 2024
  • This paper presents a novel technique that combines machine learning (ML) with moth-flame optimization (MFO) methods to predict the axial compressive strength (ACS) of concrete filled double skin steel tubes (CFDST) columns. The proposed model is trained and tested with a dataset containing 125 tests of the CFDST column subjected to compressive loading. Five ML models, including extreme gradient boosting (XGBoost), gradient tree boosting (GBT), categorical gradient boosting (CAT), support vector machines (SVM), and decision tree (DT) algorithms, are utilized in this work. The MFO algorithm is applied to find optimal hyperparameters of these ML models and to determine the most effective model in predicting the ACS of CFDST columns. Predictive results given by some performance metrics reveal that the MFO-CAT model provides superior accuracy compared to other considered models. The accuracy of the MFO-CAT model is validated by comparing its predictive results with existing design codes and formulae. Moreover, the significance and contribution of each feature in the dataset are examined by employing the SHapley Additive exPlanations (SHAP) method. A comprehensive uncertainty quantification on probabilistic characteristics of the ACS of CFDST columns is conducted for the first time to examine the models' responses to variations of input variables in the stochastic environments. Finally, a web-based application is developed to predict ACS of the CFDST column, enabling rapid practical utilization without requesting any programing or machine learning expertise.

New Prefiltering Methods based on a Histogram Matching to Compensate Luminance and Chrominance Mismatch for Multi-view Video (다시점 비디오의 휘도 및 색차 성분 불일치 보상을 위한 히스토그램 매칭 기반의 전처리 기법)

  • Lee, Dong-Seok;Yoo, Ji-Sang
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.6
    • /
    • pp.127-136
    • /
    • 2010
  • In multi-view video, illumination disharmony between neighboring views can occur on account of different location of each camera and imperfect camera calibration, and so on. Such discrepancy can be the cause of the performance decrease of multi-view video coding by mismatch of inter-view prediction which refer to the pictures obtained from the neighboring views at the same time. In this paper, we propose an efficient histogram-based prefiltering algorithm to compensate mismatches between the luminance and chrominance components in multi-view video for improving its coding efficiency. To compensate illumination variation efficiently, all camera frames of a multi-view sequence are adjusted to a predefined reference through the histogram matching. A Cosited filter that is used for chroma subsampling in many video encoding schemes is applied to each color component prior to histogram matching to improve its performance. The histogram matching is carried out in the RGB color space after color space converting from YCbCr color space. The effective color conversion skill that has respect to direction of edge and range of pixel value in an image is employed in the process. Experimental results show that the compression ratio for the proposed algorithm is improved comparing with other methods.

Efficient Coding of Motion Vector and Mode Information for H.264/AVC (H.264/AVC에서 효율적인 움직임 벡터와 모드 정보의 압축)

  • Lee, Dong-Shik;Kim, Young-Mo
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.10
    • /
    • pp.1359-1365
    • /
    • 2008
  • The portion of header in H.264 gets higher than those of previous standards instead of its better compression efficiency. Therefore, this paper proposes a new technique to compress the header of H.264. Unifying a sentence elementary in H.264, H.264 does not consider the distribution of element which be encoded and uses existing Exp-Golomb method, but it is uneffective for variable length coding. Most of the header are block type(s) and motion vector difference(s), and there are redundancies in the header of H.264. The redundancies in the header of H.264 which are analyzed in this paper are three. There are frequently appearing symbols and non-frequently appearing symbols in block types. And when mode 8 is selected in macroblock, all of four sub-macroblock types are transferred. At last, same values come in motion vector difference, especially '0.' This paper proposes the algorithm using type code and quadtree, and with them presents the redundant information of header in H.264. The type code indicates shape of the macroblock and the quadtree does the tree structured motion compensation. Experimental results show that proposed algorithm achieves lower total number of encoded bits over JM12.4 up to 32.51% bit reduction.

  • PDF

Implementation of the Color Matching Between Mobile Camera and Mobile LCD Based on RGB LUT (모바일 폰의 카메라와 LCD 모듈간의 RGB 참조표에 기반한 색 정합의 구현)

  • Son Chang-Hwan;Park Kee-Hyon;Lee Cheol-Hee;Ha Yeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.3 s.309
    • /
    • pp.25-33
    • /
    • 2006
  • This paper proposed device-independent color matching algorithm based on the 3D RGB lookup table (LUT) between mobile camera and mobile LCD (Liquid Crystal Display) to improve the color-fidelity. Proposed algorithm is composed of thee steps, which is device characterization, gamut mapping, 3D RGB-LUT design. First, the characterization of mobile LCD is executed using the sigmoidal function, different from conventional method such as GOG (Gain Offset Gamma) and S-curve modeling, based on the observation of electro-optical transfer function of mobile LCD. Next, mobile camera characterization is conducted by fitting the digital value of GretagColor chart captured under the daylight environment (D65) and tristimulus values (CIELAB) using the polynomial regression. However, the CIELAB values estimated by polynomial regression exceed the maximum boundary of the CIELAB color space. Therefore, these values are corrected by linear compression of the lightness and chroma. Finally, gamut mapping is used to overcome the gamut difference between mobile camera and moible LCD. To implement the real-time processing, 3D RGB-LUT is designed based on the 3D RGB-LUT and its performance is evaluated and compared with conventional method.