• Title/Summary/Keyword: Compressible Flow

Search Result 829, Processing Time 0.026 seconds

Numerical Simulation of Flow-Induced Birefringence in Injection/Compression Molding (사출압축성형에서의 유동에 의한 복굴절 해석)

  • Lee H.-S.;Isayev A.I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.65-69
    • /
    • 2004
  • A computer code was developed to simulate the filling stage of the injection/compression molding process by a finite element method. The constitutive equation used here was the compressible Leonov model. The PVT relationship was assumed to follow the Tait equation. The flow-induced birefringence was related to the calculated flow stresses through the linear stress-optical law. Simulations of a disk part under different processing conditions including the variation of compression stroke and compression speed were carried out to understand their effects on flow-induced birefringence. The simulated results were also compared with those by conventional injection molding and with experimental data from literature.

  • PDF

EXTENSION OF AUSMPW+ SCHEME FOR TWO-FLUID MODEL

  • Park, Jin Seok;Kim, Chongam
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.17 no.3
    • /
    • pp.209-219
    • /
    • 2013
  • The present paper deals with the extension of AUSMPW+ scheme into two-fluid model for multiphase flow. AUSMPW+ scheme is the improvement of a single-phase AUSM+ scheme by designing pressure-based weighting functions to prevent oscillations near a wall and shock instability after a strong shock. Recently, Kitamura and Liou assessed a family of AUSM-type schemes with two-fluid model governing equations [K. Kitamura and M.-S. Liou, Comparative study of AUSM-Family schemes in compressible multi-phase flow simulations, ICCFD7-3702 (2012)]. It was observed that the direct application of the single-phase AUSMPW+ did not provide satisfactory results for most of numerical test cases, which motivates the current study. It turns out that, by designing pressure-based weighting functions, which play a key role in controlling numerical diffusion for two-fluid model, problems reported in can be overcome. Various numerical experiments validate the proposed modification of AUSMPW+ scheme is accurate and robust to solve multiphase flow within the framework of two-fluid model.

A Drag and Flow Characteristics around the Hybrid Projectile (하이브리드탄의 항력 및 유동해석)

  • 이상길;이동현
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.23-34
    • /
    • 2000
  • Three dimensional, compressible, mass weighted averaging of Favre, Navier-Stokes system with k-$\varepsilon$ turbulence, is numerically discretized to compute three dimensional multiple jet interaction flow fields for a hybrid projectile containing three rocket motors in the ogive section. Numerical flow field computations have been made for angled nose jets and rockets at supersonic speed using multiblock structured grid. The jet conditions include very high jet to free stream pressure ratio and high temperature. It is shown that the strength of nozzle stagnation pressure affects the flow field near the side nozzle and the high stagnation pressure increases total amount of drag by a few percent. However, minor drag loss due to the pressure drag might be fully overcomed by an additional axial thrust. The results of present study can be applied for the design of future hybrid projectile.

  • PDF

Dynamic Modeling of PIG Flow through Curved Section in Natural Gas Pipelines (천연가스배관내 곡선 영역을 지나는 피그흐름의 동적모델링)

  • Nguyen, Tan Tien;Yoo, Hui-Ryong;Rho, Yong-Woo;Kim, Sang-Bong
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.247-252
    • /
    • 2001
  • In this paper, dynamic modeling and its analysis for the PIG flow through $90^{\circ}$ curved pipe with compressible and unsteady flow are studied. The PIG dynamics model is derived by using Lagrange equation under assumption that it passes through 3 different sections in the curved pipeline such that it moves into, inside and out of the curved section. The downstream and up stream flow dynamics including the curved sections are solved using MOC. The effectiveness of the derived mathematical models is estimated by simulation results for a low pressure natural gas pipeline including downward and upward curved sections. The simulation results show that the proposed model and solution can be used for estimating the PIG dynamics when we pig the pipeline including curved section.

  • PDF

A study on Geometry of Labyrinth Seal for High Speed Machining Center (고속주축용 라비린스 시일의 형상설계에 관한 연구)

  • 나병철;전경진;한동철
    • Tribology and Lubricants
    • /
    • v.13 no.3
    • /
    • pp.56-62
    • /
    • 1997
  • Sealing an oil-air mixture plays important roles to have an enhanced lubrication for high speed spindle. High speed spindles require non-contact type sealing mechanism. In this study, an optimum seal design to minimize leakage is concerned in the aspect of flow control. This paper categorizes geometries of mostly used non-contact type seals and analyzes each leakage characteristics to minimize a leakage on sealing area. Effect of minimum clearance and its position are considered according to variation of detail geometry. The estimation of non-leaking property is determined by amount of pressure drop in the leakage path assuming constant leakage flow. To simulate an oil jet or oil mist type high speed spindle lubrication, the working fluid is regarded as two phases that are mixed flow of oil phase and air phase. Both of the turbulence and the compressible flow model were introduced in CFD(Computational Fluid Dynamics) analysis. Design parameters has been induced to minimize leakage in limited space, and a methodological study on geometrical optimization has been conducted.

Computation of aerodynamic coefficients of a re-entry vehicle at Mach 6

  • R.C. Mehta;E. Rathakrishnan
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.5
    • /
    • pp.457-471
    • /
    • 2023
  • The paper evaluates the aerodynamic coefficients on a blunt-nose re-entry capsule with a conical cross-section followed by a cone-flare body. A computer code is developed to solve three-dimensional compressible inviscid equationsfor flow over a Space Recovery Experiment (SRE) configuration at different flare-cone half-angle at Mach 6 and angle of attack up to 5°, at 1° interval. The surface pressure variation is numerically integrated to obtain the aerodynamic forces and pitching moment. The numerical analysis reveals the influence of flare-cone geometry on the flow characteristics and aerodynamic coefficients. The numerical results agree with wind tunnel results. Increase of cone-flare angle from 25° to 35° results in increase of normal force slope, axial forebody drag, base drag and location of centre of pressure by 62.5%, 56.2% and 33.13%, respectively, from the basic configuration ofthe SRE of 25°.

A FEASIBILITY STUDY OF A NAVIER-STOKES FLOW SOLVER USING A KINETIC BGK SCHEME IN TRANSITIONAL REGIME (Kinetic BGK 기법을 이용한 Navier-Stokes 유동 해석자의 천이 영역 적용성 연구)

  • Cho, M.W.;Yang, T.H.;Kwon, O.J.
    • Journal of computational fluids engineering
    • /
    • v.20 no.3
    • /
    • pp.54-61
    • /
    • 2015
  • In the present study, a flow solver using a kinetic BGK scheme was developed for the compressible Navier-Stokes equation. The kinetic BGK scheme was used to simulate flow field from the continuum up to the transitional regime, because the kinetic BGK scheme can take into account the statistical properties of the gas particles in a non-equilibrium state. Various numerical simulations were conducted by the present flow solver. The laminar flow around flat plate and the hypersonic flow around hollow cylinder of flare shape in the continuum regime were numerically simulated. The numerical results showed that the flow solver using the kinetic BGK scheme can obtain accurate and robust numerical solutions. Also, the present flow solver was applied to the hypersonic flow problems around circular cylinder in the transitional regime and the results were validated against available numerical results of other researchers. It was found that the kinetic BGK scheme can similarly predict a tendency of the flow variables in the transitional regime.

Numerical analysis for the development of a Mixed-flow In-line duct fan with a high performance (고성능 사류식 In-line duct fan의 개발을 위한 전산해석)

  • Kim, Sung-Kon;Cho, Lee-Sang;Cho, Jin-Soo;Won, Eu-Pil
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.604-609
    • /
    • 2001
  • This numerical analysis uses the lifting surface method and frequency-domain panel method based on the linear compressible aerodynamic theory. Increased knowledge of flow conditions within mixed-flow fan should indicates means of improving performance of these turbomachines. Thus, only an approximate solution is obtained whose prime intent is to recognize the most significant characteristics of the "ideal" geometry. For a given set of operating condition, the flow conditions within mixed-flow fan depend on the geometry of the machine (three-dimensional flow effects) and on the properties of the fluid. But most treatments of the problem have been concerned with the two-dimensional flow effects for incompressible, non-viscous fluids. Interest in the field of mixed-flow fan resulted in the undertaking of a program to develop reliable design procedures that would avoid the need for lengthy development work.

  • PDF

Quasi-Three Dimensional Calculation of Compressible Flow in a Turbomachine considering Irreversible H-S Flow (터어보 기계(機械) 내부(內部)의 비가역(非可逆) H-S유동(流動)을 고려(考慮)한 준(準)3차원(次元) 유동해석(流動解析))

  • Cho, Kang-Rae;Oh, Jong-Sik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.4
    • /
    • pp.241-249
    • /
    • 1991
  • A quasi-three dimensional calculation method is presented on the basis of Wu's idea using finite element methods. In B-B flow the governing equations are cast into a single equation to overcome the restriction of the type of turbomachinery, and Kutta condition is exactly assured by introducing a combination of two kinds of stream functions. In H-S flow a dissipative force which is assumed to be opposed to the relative velocity is added to the governing equation for a consistent loss model. The entropy change along each streamline is then calculated by assuming that the dissipative force may be a force coming from laminar viscous stresses with inviscid velocity distributions. Both the flow solvers are combined to build a three-dimensional flow field through a few iterations. For an effect of the distortion of H-S flow surface the body forces are computed after each B-B flow calculation is finished. Mizuki's centrifugal impellers are tested numerically. The reliability of the numerical solution compared with experimental data is guaranteed.

  • PDF

A Study on an Axial-Type 2-D Turbine Blade Shape for Reducing the Blade Profile Loss

  • Cho, Soo-Yong;Yoon, Eui-Soo;Park, Bum-Seog
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.8
    • /
    • pp.1154-1164
    • /
    • 2002
  • Losses on the turbine consist of the mechanical loss, tip clearance loss, secondary flow loss and blade profile loss etc.,. More than 60 % of total losses on the turbine is generated by the two latter loss mechanisms. These losses are directly related with the reduction of turbine efficiency. In order to provide a new design methodology for reducing losses and increasing turbine efficiency, a two-dimensional axial-type turbine blade shape is modified by the optimization process with two-dimensional compressible flow analysis codes, which are validated by the experimental results on the VKI turbine blade. A turbine blade profile is selected at the mean radius of turbine rotor using on a heavy duty gas turbine, and optimized at the operating condition. Shape parameters, which are employed to change the blade shape, are applied as design variables in the optimization process. Aerodynamic, mechanical and geometric constraints are imposed to ensure that the optimized profile meets all engineering restrict conditions. The objective function is the pitchwise area averaged total pressure at the 30% axial chord downstream from the trailing edge. 13 design variables are chosen for blade shape modification. A 10.8 % reduction of total pressure loss on the turbine rotor is achieved by this process, which is same as a more than 1% total-to-total efficiency increase. The computed results are compared with those using 11 design variables, and show that optimized results depend heavily on the accuracy of blade design.