References
- Desikan, S.L.N., Patil, M.N. and Subramanian, S. (2015), "Understanding of flow features over a typical crew module at Mach 4", Aeronaut. J., 119, 727-746. https://doi.org/10.1017/S0001924000010794.
- Hayes, W.D. and Probstein, R.F. (1959), Hypersonic Flow Theory, Academic Press, New York, USA.
- Hornung, H., Martinez Schramm, J. and Hannemann, K. (2019), "Hypersonic flow over spherically blunted cone modules for atmospheric entry. Part 1. The sharp cone and the sphere", J. Fluid Mech., 871, 1097-1116. https://doi.org/10.1017/jfm.2019.342.
- Hu. Y., Huang, H. and Zhang, Z. (2017), "Numerical simulation of a hypersonic flow past a blunt body", Int. J. Numer. Meth. Heat Fluid Flow, 27(6), 1351-1364. https://doi.org/10.1108/HFF-05-2016-0187.
- Jameson, A., Schmidt, W. and Turkel, E. (1981), "Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes", 14th Fluid and Plasma Dynamics Conference, June.
- Kalimuthu, R. (2009), "Experimental investigation of hemispherical nosed cylinder with and without spike in a hypersonic flow", Ph.D. Thesis, Department of Aerospace Engineering, Indian Institute of Technology, Kanpur, India.
- Lamb, J.P. and Oberkampf, W.L. (1995), "Review and development of base pressure and base heating correlations in Supersonic flow", J. Spacecraft Rocket., 32(1), 8-23. https://doi.org/10.2514/3.26569.
- Laurence, S.J., Schramm, J.M. and Hannemann, K. (2012), "Force and moment measurements on a freeflying capsule model in a high-enthalpy shock tunnel", 28th Aerodynamic Measurement Technology, Ground Testing, and Flight Testing Conference including the Aerospace T&E Days Forum, 2861. https://doi.org/10.2514/6.2012-2861.
- Liever, P.A., Habchi, S.D., Burnell, S.I. and Lingard, J.S. (2003), "Computational fluid dynamics prediction of the Beagle 2 aerodynamic data base", J. Spacecraft Rocket., 40(5), 632-638. https://doi.org/10.2514/2.691.
- Lin, T.C., Sproul, L.K., Kim, M., Olmos, M. and Feiz, H. (2006), "Hypersonic reentry vehicle wake flow fields at angle of attack", 44th AIAA Aerospace Sciences Meeting and Exhibit, 582. https://doi.org/10.2514/6.2006-582.
- MacCormack, R.W. (2014), Numerical Computation of Compressible and Viscous Flow, American Institute of Aeronautics and Astronautics, Inc., USA.
- Mehta, R.C. (2013d), "Computational fluid dynamics analysis over a re-entry capsule at Mach 6", AIAA Scitech 2023 Forum, 2114. https://doi.org/10.2514/6.2023-2114.
- Mehta, R.C. (2017c), "Multi-block structured grid generation for computational fluid dynamics", Scholar J. Eng. Technol., 5(8), 387-219. https://doi.org/10.21276/sjet.
- Mehta, R.C. (2019a), "Numerical simulation of base pressure and drag of space re-entry capsules at high speed, hypersonic vehicles-Past, present and future developments", https://doi.org/10.5772/intechopen.83651.
- Mehta, R.C. (2020b), "Computation of base pressure based on to fill-up the growing space applied to reentry capsules", AIAA Aviation 2020 Forum, 2711. https://doi.org/10.2514/6.2020-2711.
- Murphy, K.J., Bibb, K.L., Brauckmann, G.J., Rhode, M.N., Owens, B., Chan, D.T., Walker, E.L., Bell, J.H. and Wilson, T.M. (2011), "Orion crew module aerodynamic testing", 29th AIAA Applied Aerodynamics Conference, 3502. https://doi.org/10.2514/6.2011-3502.
- Otsu, H. (2021), "Aerodynamic characteristics of re-entry capsules with hyperbolic contours", Aerosp., 8, 287. https://doi.org/10.3390/aerospace8100287.
- Ottens, H.B.A. (2001), "Preliminary computational investigation on aerodynamic phenomena DELFT aerospace re-entry test vehicle", Proceedings of the 4th European Symposium on Aerothermodynamics for Allocations, ESA Capua, Italy.
- Stremel, P.K., McMullen, M.S. and Garcia, J.A. (2011), "Computational aerodynamic simulations of the Orion command module", AIAA Applied Aerodynamics Conference, 3503. https://doi.org/10.2514/6.2011-3503.
- Subramanian, S., Kurup, M.K.A., Kalimuthu R. and Raveendran, P.G. (1996), "An experimental investigation of hypersonic aerodynamic characteristics of re-entry bi-conic configurations at Mach 6", Vikram Sarabhai Space Centre, Trivandrum, India, VSSC/TR/186/96.
- Teramoto, S., Hiraki, K. and Fujii, K. (2001), "Numerical analysis of dynamic stability of a reentry capsule at transonic transonic speeds", AIAA J., 39(4), 646-653. https://doi.org/10.2511/2.1357.
- Truitt, R.W. (1959), Hypersonic Aerodynamic, Ronald Press, New York, USA.
- Viviani, A. and Pezzella, G. (2010a), "Computational flowfield analysis over a blunt-body re-entry vehicle", J. Spacecraft Rocket., 47(2), 258-270. https://doi.org/10.2514/1.40876.
- Viviani, A. and Pezzella, G. (2015b), Aerodynamic and Aerothermodynamic Analysis of Space Mission Vehicles, Springer International Publishing A.G., Switzerland.
- Weiland, C. (2014), Aerodynamic Data of Space Vehicles, Springer-Verlag, Berlin Heidelberg, Germany.
- Wood, W.A., Gnoffo, P.A. and Rault, D.F.G. (1996), "Aerothermodynamic analysis of Commercial Experiment Transporter (COMET) re-entry capsule", 34th Aerospace Sciences Meeting and Exhibit, 316. https://doi.org/10.2514/6.1996-316.
- Zhenmiz, Z., Yunliancy, D., Yi, L. and Tieliang, Z. (2011), "Shape optimization design method for the conceptual design of reentry vehicles", Acta Astonautica Sincia, 32(11), 1971-1979.