• Title/Summary/Keyword: Compounds

Search Result 18,049, Processing Time 0.043 seconds

Protective effect of Eucommia ulmoides oliver leaves against PM2.5-induced oxidative stress in neuronal cells in vitro (미세먼지(PM2.5)로 유도된 산화적 스트레스에 대한 두충(Eucommia ulmoides Oliver) 잎의 in vitro 뇌 신경세포 보호 효과)

  • Kim, Min Ji;Kang, Jin Yong;Park, Seon Kyeong;Kim, Jong Min;Moon, Jong Hyun;Kim, Gil Han;Lee, Hyo Lim;Jeong, Hye Rin;Heo, Ho Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.4
    • /
    • pp.423-433
    • /
    • 2021
  • This study was performed to examine the neuroprotective effect of the ethyl acetate fraction from Eucommia ulmoides oliver leaf (EFEL) on PM2.5-induced cytotoxicity. EFEL had higher total phenolic and flavonoid contents than the other fractions. In ABTS and DPPH radical scavenging activities, the IC50 of EFEL was measured as 212.80 and 359.13 ㎍/mL, respectively. To investigate the neuroprotective effect of EFEL, MTT and DCF-DA assays were performed on HT22, MC-IXC, and BV-2 cells. EFEL effectively decreased PM2.5-induced intercellular reactive oxygen species (ROS) content and inhibited PM2.5-induced cell death. In the results of protein expression related to cellular cytotoxicity on microglial cells (BV-2), EFEL had an improvement effect on cell apoptosis and inflammatory pathways. Rutin and chlorogenic acid were identified as the main physiological compounds. Moreover, it was expected that EFEL, including rutin and chlorogenic acid, could be functional food substances with neuroprotective effects against PM2.5-induced oxidative stress.

Comparison on the Extraction Efficiency and Antioxidant Activity of Flavonoid from Citrus Peel by Different Extraction Methods (추출방법에 따른 감귤 과피 유래 Flavonoid의 추출효율 및 항산화 효과에 대한 비교)

  • Cheigh, Chan-Ick;Jung, Won-Guen;Chung, Eun-Young;Ko, Min-Jung;Cho, Sang-Woo;Lee, Jae-Hwan;Chang, Pahn-Shick;Park, Young-Seo;Paik, Hyun-Dong;Kim, Kee-Tae;Chung, Myong-Soo
    • Food Engineering Progress
    • /
    • v.14 no.2
    • /
    • pp.166-172
    • /
    • 2010
  • The extraction of polyphenol and flavonoid from citrus peel was performed by the ethanol, sugar, hot water (80$^{\circ}C$), and subcritical water extraction methods. The maximum yields of total polyphenolic compounds (27.25${\pm}$1.33 mg QE/g DCP, QE and DCP indicate quercetin equivalent and dried citrus peel, respectively) and flavonoids (7.31${\pm}$0.41 mg QE/g DCP) were obtained by subcritical water extraction (SWE) with operating conditions of 190$^{\circ}C$, 1300 psi, and 10 min. The yields by SWE were over 7.2-, and 8.5-fold higher than those of total polyphenols (3.79${\pm}$0.73 mg QE/g DCP) and flavonoids (0.86${\pm}$0.27 mg QE/g DCP) obtained using the ethanol extraction, which showed the highest extraction efficiency among tested conventional methods, respectively. Antioxidant activities of extracts obtained by different methods showed no significant differences. However, the relative antioxidant yield per 1 g dried citrus peel by SWE (190$^{\circ}C$, 10 min) was over 9.5-fold higher than that by the ethanol extraction.

Optimization of Extraction of Functional Components from Black Rice Bran (흑미 미강의 기능성 성분 추출 공정 최적화)

  • Jo, In-Hee;Choi, Yong-Hee
    • Food Engineering Progress
    • /
    • v.15 no.4
    • /
    • pp.388-397
    • /
    • 2011
  • The purpose of this study was to determine the optimum ethanol extraction conditions for maximum extraction of functional components such as ferulic acid, oryzanol, and toopherol from black rice bran using Response Surface Methodology (RSM). A central composite design was applied to investigate the effects of the independent variables of solvent ratio ($X_{1}$), extraction temperature ($X_{2}$) and extraction time ($X_{3}$) on the dependent variables such as total phenol components ($Y_{1}$), total flavonoids compounds ($Y_{2}$), electron donating ability ($Y_{3}$), $\gamma$-oryzanol ($Y_{4}$), ferulic acid ($Y_{5}$) and $\alpha$-toopherol components ($Y_{6}$). ANOVA results showed that coefficients of determination (R-square) of estimated models for dependent variables ranged from 0.8939 to 0.9470. It was found that solvent ratio and extraction temperature were the main effective factors in this extraction proess. Particularly, the extraction efficiency of ferulic acid, $\gamma$-oryzanol and $\alpha$-toopherol components were significantly affected by extraction temperature. As a result, optimum extraction conditions were 20.35 mL/g of solvent ratio, 79.4$^{\circ}C$ of extraction temperature and 2.88 hr of extraction time. Predicted values at the optimized conditions were acceptable when compared with experimental values.

Effect of Subcritical Water for the Enhanced Extraction Efficiency of Polyphenols and Flavonoids from Black Rice Bran (흑미강으로부터 유용 폴리페놀 및 플라보노이드의 추출효율 증진을 위한 아임계수의 효과)

  • Cheigh, Chan-Ick;Chung, Eun-Young;Ko, Min-Jung;Cho, Sang-Woo;Chang, Pahn-Shick;Park, Young-Seo;Lee, Kyoung-Ah;Paik, Hyun-Dong;Kim, Kee-Tae;Hong, Seok-In;Chung, Myong-Soo
    • Food Engineering Progress
    • /
    • v.14 no.4
    • /
    • pp.335-341
    • /
    • 2010
  • The extraction of polyphenol and flavonoid from black rice bran was performed by diverse extraction methods using the sugar solution, ethanol, hot water ($80^{\circ}C$), and by subcritical water extraction (SWE) method. By SWE under operating conditions of $190^{\circ}C$, 1,300 psi, and 10 min, the maximum yields of total polyphenolic compounds (35.06${\pm}$1.28 mg quercetin equivalent (QE)/g dried material and flavonoids (7.08${\pm}$0.31 mg QE/g dried material) could be obtained. These results were over 11.77- and 12.21-fold higher than those of the ethanol extraction, which showed the highest extraction efficiency among tested conventional methods in total polyphenols (2.98${\pm}$0.74 mg QE/g dried material) and flavonoids (0.58${\pm}$0.21 mg QE/g dried material), respectively. Though the highest antioxidant activity (87.14${\pm}$1.14%) was observed at the dried extract obtained from ethanol method, the relative antioxidant activity per 1 g dried black rice bran by SWE ($190^{\circ}C$, 10 min) was over 11.53-fold higher than that by the ethanol extraction.

Oxidative Desulfurization of Marine Diesel Using Keggin Type Heteropoly Acid Catalysts (Keggin형 헤테로폴리산 촉매를 이용한 선박용 경유의 산화 탈황)

  • Oh, Hyeonwoo;Woo, Hee Chul
    • Clean Technology
    • /
    • v.25 no.1
    • /
    • pp.91-97
    • /
    • 2019
  • Oxidative desulfurization (ODS) has received much attention in recent years because refractory sulfur compounds such as dibenzothiophenes can be oxidized selectively to their corresponding sulfoxides and sulfones, and these products can be removed by extraction and adsorption. In this work, The oxidative desulfurization of marine diesel fuel was performed in a batch reactor with hydrogen peroxide ($H_2O_2$) in the presence of various supported heteropoly acid catalysts. The catalysts were characterized by XRD, XRF, XPS and nitrogen adsorption isotherm techniques. Based on the sulfur removal efficiency of promising silica supported heteropoly acid catalysts, the ranking of catalytic activity was: $30\;H_3PW_{12}/SiO_2$ > $30\;H_3PMo_{12}/SiO_2$ > $30\;H_4SiW_{12}/SiO_2$, which appears to be related with their intrinsic acid strength. The $30\;H_3PW_{12}/SiO_2$ catalyst showed the highest initial sulfur removal efficiency of about 66% under reaction conditions of $30^{\circ}C$, $0.025g\;mL^{-1}$ (cat./oil), 1 h reaction time. However, through the recycle test of the $H_3PW_{12}/SiO_2$ catalyst, significant deactivation was observed, which was attributed to the elution of the active component $H_3PW_{12}$. By introducing cesium cation ($Cs^+$) into the $H_3PW_{12}/SiO_2$ catalyst, the stability of the catalyst was improved with changing the solubility, and the $Cs^+$ ion exchanged catalyst could be recycled for at least five times without severe elution.

Anti-inflammatory Activities of Ethanol Extracts of Dried Lettuce (Lactuca sativa L.) (건조 상추 에탄올 추출물의 항염증 활성)

  • Lee, Eun-Joo;Seo, Yu-Mi;Kim, Yong-Hyun;Chung, Chungwook;Sung, Hwa-Jung;Sohn, Ho-Yong;Park, Jong-Yi;Kim, Jong-Sik
    • Journal of Life Science
    • /
    • v.29 no.3
    • /
    • pp.325-331
    • /
    • 2019
  • Lettuce (Lactuca sativa L.) is one of the most popular green leafy vegetables, and it contains various beneficial components including polyphenolic compounds and has been known to possess various biological functions such as anti-microbial, anti-oxidative, and anti-inflammatory activities. In the present study, we prepared ethanol extract of dried lettuce (DLE) and investigated its anti-inflammatory activity. To evaluate the anti-inflammatory activity of DLE, nitric oxide (NO) production was measured in LPS-activated mouse macrophage RAW 264.7 cells. DLE significantly suppressed NO production in these cells without affecting cell viabilities while resveratrol was used as a positive control. DLE dramatically decreased the expression of pro-inflammatory genes such as iNOS and COX-2 at the mRNA and protein levels and reduced the expression of several cytokines including $IL-1{\alpha}$, $IL-1{\beta}$, IL-1F6, $TNF-{\alpha}$, CSF2 and CXCL10. In addition, DLE suppressed phosphorylation of MAPKs and the nuclear translocation of $NF-{\kappa}B$ p65 indicating DLE shows its anti-inflammatory activity via regulating MAPKs pathway and $NF-{\kappa}B$ pathways. And also, DLE reduced the production of reactive oxygen species in a dose-dependent manner. DLE increased HO-1 protein expression, and also increased the nuclear translocation of Nrf2. Overall, our results suggest that lettuce down-regulate various pro-inflammatory genes and have its anti-inflammatory activity via regulating MAPKs, $NF-{\kappa}B$, and Nrf2/HO-1 pathways.

Free Radical Scavenging, Cytotoxic Effects, and Flavonoid Content of Fractions from Leaves of Lycopus lucidus Turcz. (택란 잎 추출물의 라디칼 소거활성과 세포독성효과 및 플라보노이드 함량)

  • Na, Eun;Lee, Jung Woo;Lim, Sun Young
    • Journal of Life Science
    • /
    • v.29 no.3
    • /
    • pp.337-344
    • /
    • 2019
  • The free radical scavenging, cytotoxic effects, and flavonoid content of fractions from Lycopus lucidus Turcz leaves were here investigated. The flavonoid contents of 85% methanol (MeOH) and n-butanol (BuOH) fractions of the leaves were 41.5 mg/g and 77.2 mg/g, respectively. In DPPH and ABTs+ assays, 85% MeOH and n-BuOH fractions from the L. lucidus Turcz leaves had a greater scavenging effect (p<0.05). The n-BuOH fraction (0.5 mg/ml concentration) had scavenging effects of 88% and 92% in the DPPH and ABTs+ assays, respectively (p<0.05). Cell viability tests showed that treatment with L. lucidus Turcz leaf fractions caused cytotoxicity in the growth of AGS, HT-29, and HT-1080 cancer cells. Of the different fractions, the 85% MeOH sample displayed the highest cytotoxic activity; the $IC_{50}$ values of this fraction against AGS, HT-1080, and HT-29 cancer cells were 0.03 mg/ml, 0.14 mg/ml, and 0.16 mg/ml, respectively. These biological results indicate that the n-BuOH fraction was more effective in anti-oxidant activity while the 85% MeOH fraction was stronger in cytotoxic effects, and they suggest that these two fractions from L. lucidus Turcz leaves may contain valuable bioactive compounds, such as flavonoids.

Comparison of Quality and Bioactive Compounds in Chicken Thigh Meat from Conventional and Animal Welfare Farm in Korea (국내 일반 및 동물복지 육계 다리육의 냉장 저장 기간 중 품질과 생리활성기능 성분 비교)

  • Kim, Hee-Jin;Kim, Hye-Jin;Jeon, Jin-Ju;Oh, Sang-Jip;Nam, Ki-Chang;Shim, Kwan-Seob;Jung, Jong-Hyun;Kim, Kyong Su;Choi, Yang-Il;Kim, Sang-Ho;Jang, Aera
    • Korean Journal of Poultry Science
    • /
    • v.45 no.4
    • /
    • pp.261-272
    • /
    • 2018
  • This study was conducted to evaluate the difference in the quality of chicken thigh meat from conventional and animal welfare farms during refrigeration storage over 9 days. Chicken thigh meat from conventional (CTC, n = 30) and animal welfare farms (CTW, n = 30) was tested. The pH value was significantly lower in CTW (6.28) than in CTC (6.37) on day 1; however, no significant differences were found on subsequent days. The yellowness of CTW was higher than that of CTC on day 1, but CTW showed lower yellowness than did CTC on day 7 and 9. The cooking loss, water holding capacity, lightness, redness, and coliform levels of CTC did not show any significant difference when compared with CTW during storage. The shear force of CTW was significantly higher than that of CTC on day 1, 3, 7, and 9. Total microorganism and coliform in CTC and CTW increased with increasing storage days. On day 7 and 9, the total microorganism level of CTW was lower than that of CTC. The thiobarbituric acid value of CTW was lower than that of CTC on day 9. The volatile basic nitrogen (VBN) of CTW was lower than that of CTC during storage. Anserine content and 1,1-diphenyl-2-picryl-hydrazyl(DPPH) scavenging activity of CTW was significantly higher than CTC on day 1. These results suggest that CTW stayed fresher for longer than did CTC because of low total microorganism level on day 7 and 9, and VBN during refrigerated storage.

Effect of Fermented Ice Plant Extract on the Inhibition of Triglyceride and Cholesterol Synthesis and Tyrosinase Activity (발효 아이스플랜트(Mesembryanthemum crystallinum L.) 추출물의 triglyceride, cholesterol 합성저해 및 tyrosinase 활성억제 효과)

  • Nam, Sanghae;Kim, Seonjeong;Ko, Keunhee
    • Journal of Life Science
    • /
    • v.29 no.6
    • /
    • pp.688-696
    • /
    • 2019
  • This study investigated changes in triglyceride and cholesterol synthesis and tyrosinase activity induced by ice plant (Mesembryanthemum crystallinum L.) extract, which cannot be stored for long periods of time due to its high moisture content when it was fermented to improve its storage stability. The accumulation of triglyceride and cholesterol in HepG2 cells inhibited the accumulation with a relatively large magnitude in n-butanol and aqueous fractions that generally have high polarity, however, changes in inhibition potency due to the fermentation were not significant. As for the effect to inhibit tyrosinase activity, when L-tyrosine was used as a substrate, the inhibitory activity was the highest for the aqueous fraction at $60.58{\pm}4.03%$ and $63.35{\pm}4.35%$, before and after fermentation, respectively, which amounted to 72% of that of the positive control group (arbutin, $100{\mu}g/ml$). In addition, when L-3,4-dihydroxyphenylalanine (L-DOPA) was used as a substrate, the inhibitory activity was also found the highest for the aqueous fraction at $56.85{\pm}1.57%$ and $59.38{\pm}1.74%$, before and after fermentation, respectively, which amounted to at least 88% of that in the positive control (kojic acid, $100{\mu}g/ml$). Overall, the activity of the fermented ice plant extract was similar or a little higher compared to that of the one without fermentation, indicating that fermentation can be a good approach to improve the storage stability of the ice plant.

Anti-oxidant and anti-adipocyte differentiation of Aster glehni and Aster yomena (섬쑥부쟁이와 쑥부쟁이의 항산화 및 지방세포 분화 억제 효과)

  • Lee, Ji Yeon;Park, Jeong-Yong;Kim, Hyung Don;Lee, Seung Eun;Lee, Jeong Hoon;Lee, Yunji;Seo, Kyung Hye
    • Journal of Nutrition and Health
    • /
    • v.52 no.3
    • /
    • pp.250-257
    • /
    • 2019
  • Purpose: Aster glehnii (AG) and Aster yomena (AY) are medicinal plants that belong to the family Compositea and grow widely in Korea. Plants in the genus Aster have been used to treat snakebite wounds or bruises in oriental medicine. This study compared the effects of anti-oxidants and anti-adipocyte differentiation according to the species (the aerial parts of AG and AY). Methods: AG and AY were extracted using 70% ethanol (-E) and water (-W) at room temperature. The anti-oxidant activities were measured by total phenol contents (TPC), total flavonoid contents (TFC), DPPH and $ABTS^+$ assay. In addition, correlation analysis was performed for the anti-oxidant compounds and effect. The level of anti-adipocyte differentiation was assessed using an oil red O assay on pre-adipocytes. Results: AG-W showed higher TPC ($6.92{\mu}g/mL$) and AG-E presented higher TFC ($8.22{\mu}g/mL$) than the other extracts. Furthermore, AG-E exhibited higher radical scavenging activity in the DPPH and $ABTS^+$ assay ($IC_{50}$: 104.88 and $30.06{\mu}g/mL$). In the cytotoxicity assay, AG and AY extracts at concentrations less than $100{\mu}g/mL$ were non toxic. AG-W reduced the lipid accumulation of 3T3-L1 cells significantly after differentiation (70.49%) compared to the other extracts. Conclusion: These results show that the water extract of AG has anti-oxidant effects and reduces the differentiation of 3T3-L1 cells. Therefore, AG has utility as a functional food material for its anti-oxidant activities and ability to prevent lipid accumulation.