DOI QR코드

DOI QR Code

Oxidative Desulfurization of Marine Diesel Using Keggin Type Heteropoly Acid Catalysts

Keggin형 헤테로폴리산 촉매를 이용한 선박용 경유의 산화 탈황

  • Oh, Hyeonwoo (Department of Chemical Engineering, Pukyong National University) ;
  • Woo, Hee Chul (Department of Chemical Engineering, Pukyong National University)
  • Received : 2019.02.14
  • Accepted : 2019.02.21
  • Published : 2019.03.30

Abstract

Oxidative desulfurization (ODS) has received much attention in recent years because refractory sulfur compounds such as dibenzothiophenes can be oxidized selectively to their corresponding sulfoxides and sulfones, and these products can be removed by extraction and adsorption. In this work, The oxidative desulfurization of marine diesel fuel was performed in a batch reactor with hydrogen peroxide ($H_2O_2$) in the presence of various supported heteropoly acid catalysts. The catalysts were characterized by XRD, XRF, XPS and nitrogen adsorption isotherm techniques. Based on the sulfur removal efficiency of promising silica supported heteropoly acid catalysts, the ranking of catalytic activity was: $30\;H_3PW_{12}/SiO_2$ > $30\;H_3PMo_{12}/SiO_2$ > $30\;H_4SiW_{12}/SiO_2$, which appears to be related with their intrinsic acid strength. The $30\;H_3PW_{12}/SiO_2$ catalyst showed the highest initial sulfur removal efficiency of about 66% under reaction conditions of $30^{\circ}C$, $0.025g\;mL^{-1}$ (cat./oil), 1 h reaction time. However, through the recycle test of the $H_3PW_{12}/SiO_2$ catalyst, significant deactivation was observed, which was attributed to the elution of the active component $H_3PW_{12}$. By introducing cesium cation ($Cs^+$) into the $H_3PW_{12}/SiO_2$ catalyst, the stability of the catalyst was improved with changing the solubility, and the $Cs^+$ ion exchanged catalyst could be recycled for at least five times without severe elution.

산화탈황반응은 디벤조티오펜(dibenzothiophenes, DBTs)과 같이 제거하기 어려운 구조의 황화합물들을 선택적으로 산화하여 설폭사이드(sulfoxide)와 설폰(sulfone) 등의 형태로 전환하고, 이들을 추출과 흡착에 의해 제거할 수 있기 때문에 최근 많은 주목을 받고 있다. 본 연구에서는 선박용 경유의 산화탈황반응을 회분식반응기에서 산화제 과산화수소($H_2O_2$)와 함께 다양한 헤테로폴리산 담지촉매에 의해 수행하였다. 제조 촉매들은 X-선 회절분석(XRD), X-선 형광분석(XRF), X-선 광전자분광분석(XPS) 및 질소 흡착등온선 등의 기법에 의해 특성분석이 이루어졌다. 유망한 지지체인 실리카에 30 wt% 담지된 헤테로폴리산 촉매 활성 순위는 황 제거율 기준으로, $30\;H_3PW_{12}/SiO_2$ > $30\;H_3PMo_{12}/SiO_2$ > $30\;H_4SiW_{12}/SiO_2$ 순으로 나타났으며, 이는 헤테로폴리산의 고유 산세기에 기인한 것으로 판단된다. $30\;H_3PW_{12}/SiO_2$ 촉매는 반응 온도 $30^{\circ}C$, 촉매량 $0.025g\;mL^{-1}$ (cat./oil), 반응 시간 1 h의 반응조건 하에서 약 66%의 가장 높은 초기 황 제거율을 보였다. 그러나 $H_3PW_{12}/SiO_2$ 촉매의 재사용성 실험을 통해 확연하게 활성이 저하됨을 확인하였으며 이는 활성 성분인 $H_3PW_{12}$의 용출에 기인한 것으로 보인다. $H_3PW_{12}/SiO_2$ 촉매로의 세슘 양이온($Cs^+$) 도입에 의한 용해도의 변화와 함께 촉매의 안정성이 개선되었으며, $Cs^+$ 이온교환 된 촉매는 최소 5회 이상 재사용이 가능함을 확인하였다.

Keywords

CJGSB2_2019_v25n1_91_f0001.png 이미지

Figure 1. Effect of support on sulfur removal over H3PW12 catalysts. Reaction conditions: catalyst amount = 0.025 g mL-1 (cat./oil), T = 30 ℃, t = 3 h, O/S molar ratio = 100.

CJGSB2_2019_v25n1_91_f0002.png 이미지

Figure 2. Effect of catalyst amount on sulfur removal over heteropoly acid catalysts. Reaction conditions: T = 30 ℃, t = 3 h, O/S molar ratio = 100.

CJGSB2_2019_v25n1_91_f0003.png 이미지

Figure 3. Effect of reaction temperature on sulfur removal over heteropoly acid catalysts. Reaction conditions: catalyst amount = 0.025 g mL-1 (cat./oil), t = 3 h, O/S molar ratio = 100.

CJGSB2_2019_v25n1_91_f0004.png 이미지

Figure 4. Effect of reaction time on sulfur removal over heteropoly acid catalysts. Reaction conditions: catalyst amount = 0.025 g mL-1 (cat./oil), T = 30 ℃, O/S molar ratio = 100.

CJGSB2_2019_v25n1_91_f0005.png 이미지

Figure 5. XRD patterns of H3PW12/SiO2 catalysts with various H3PW12 loading.

CJGSB2_2019_v25n1_91_f0006.png 이미지

Figure 6. XPS analysis of H3PW12/SiO2 catalysts with various H3PW12 loading.

CJGSB2_2019_v25n1_91_f0007.png 이미지

Figure 7. Effect of H3PW12 loading on sulfur removal over H3PW12/SiO2 catalysts. Reaction conditions: catalyst amount = 0.025 g mL-1 (cat./oil), T = 30 ℃, t = 3 h, O/S molar ratio = 100.

CJGSB2_2019_v25n1_91_f0008.png 이미지

Figure 8. Reusability test of 30 H3PW12/SiO2 and 30 Cs3PW12/SiO2 catalysts. Reaction conditions: catalyst amount = 0.025 gmL-1 (cat./oil), T = 30 ℃, t = 1 h, O/S molar ratio = 100.

Table 1. BET surface area of H3PW12 supported on different supports

CJGSB2_2019_v25n1_91_t0001.png 이미지

Table 2. Atomic composition and BET surface area of silica support and H3PW12/SiO2 catalysts

CJGSB2_2019_v25n1_91_t0002.png 이미지

References

  1. Chandra Srivastava, V., "An Evaluation of Desulfurization Technologies for Sulfur Removal from Liquid Fuels," RSC Adv., 2(3), 759-783 (2012). https://doi.org/10.1039/C1RA00309G
  2. Eyring, V., Köhler, H. W., Van Aardenne, J., and Lauer, A., "Emissions from International Shipping: 1. The Last 50 Years," J. Geophys. Res. Atmos., 110(D17) (2005).
  3. Partanen, A. I., Laakso, A., Schmidt, A., Kokkola, H., Kuokkanen, T., Pietikainen, J. P., Kerminen, V. M., Lehtinen, K. E. J., Laakso, L., and Korhonen, H., "Climate and Air Quality Trade-Offs in Altering Ship Fuel Sulfur Content," Atmos. Chem. Phys., 13(23), 12059-12071 (2013). https://doi.org/10.5194/acp-13-12059-2013
  4. Kim, A. R., and Seo, Y.-J., "The Reduction of $SO_x$ Emissions in the Shipping Industry: The Case of Korean Companies," Mar. Policy, 100, 98-106 (2019). https://doi.org/10.1016/j.marpol.2018.11.024
  5. Yang, Y.-z., Liu, X.-g., and Xu, B.-s., "Recent Advances in Molecular Imprinting Technology for the Deep Desulfurization of Fuel Oils," New Carbon Mater., 29(1), 1-14 (2014). https://doi.org/10.1016/S1872-5805(14)60121-9
  6. de Souza, W. F., Guimaraes, I. R., Guerreiro, M. C., and Oliveira, L. C. A., "Catalytic Oxidation of Sulfur and Nitrogen Compounds from Diesel Fuel," Appl. Catal., A, 360(2), 205-209 (2009). https://doi.org/10.1016/j.apcata.2009.03.023
  7. Oh, H., Kim, J. M., Huh, K.-S., and Woo, H. C., "Oxidative Desulfurization of Marine Diesel Using $WO_x$/SBA-15 Catalyst and Hydrogen Peroxide," Korean Chem. Eng. Res., 55(4), 567-573 (2017). https://doi.org/10.9713/KCER.2017.55.4.567
  8. Dooley, K. M., Liu, D., Madrid, A. M., and Knopf, F. C., "Oxidative Desulfurization of Diesel with Oxygen: Reaction Pathways on Supported Metal and Metal Oxide Catalysts," Appl. Catal., A, 468, 143-149 (2013). https://doi.org/10.1016/j.apcata.2013.08.013
  9. Kim, H., Jeong, K.-E., Jeong, S.-Y., Park, Y.-K., and Jeon, J.-K., "Decomposition of Dibenzothiophene Sulfone over KF/MgO Catalysts," Clean Technol., 16(1), 12-18 (2010).
  10. Bhutto, A. W., Abro, R., Gao, S., Abbas, T., Chen, X., and Yu, G., "Oxidative Desulfurization of Fuel Oils Using Ionic Liquids: A Review," J. Taiwan Inst. Chem. Eng., 62, 84-97 (2016). https://doi.org/10.1016/j.jtice.2016.01.014
  11. Serrano, D. P., Sanz, R., Pizarro, P., Moreno, I., and Medina, S., "Hierarchical TS-1 Zeolite as an Efficient Catalyst for Oxidative Desulphurization of Hydrocarbon Fractions," Appl. Catal., B, 146, 35-42 (2014). https://doi.org/10.1016/j.apcatb.2013.05.025
  12. Jia, Y., Li, G., and Ning, G., "Efficient Oxidative Desulfurization (ODS) of Model Fuel with $H_2O_2$ Catalyzed by $MoO_3/{\gamma}-Al_2O_3$ Under Mild and Solvent Free Conditions," Fuel Proc. Technol., 92(1), 106-111 (2011). https://doi.org/10.1016/j.fuproc.2010.09.011
  13. Xiao, X., Zhong, H., Zheng, C., Lu, M., Zuo, X., and Nan, J., "Deep Oxidative Desulfurization of Dibenzothiophene Using a Flower-Like $WO_3{\cdot}H_2O$ Catalyst in an Organic Biphasic System," Chem. Eng. J., 304, 908-916 (2016). https://doi.org/10.1016/j.cej.2016.07.022
  14. Komintarachat, C., and Trakarnpruk, W., "Oxidative Desulfurization Using Polyoxometalates," Ind. Eng. Chem. Res., 45(6), 1853-1856 (2006). https://doi.org/10.1021/ie051199x
  15. Rafiee, E., and Nobakht, N., "Keggin Type Heteropoly Acid, Encapsulated in Metal-Organic Framework: A Heterogeneous and Recyclable Nanocatalyst for Selective Oxidation of Sulfides and Deep Desulfurization of Model Fuels," J. Mol. Catal. A: Chem., 398, 17-25 (2015). https://doi.org/10.1016/j.molcata.2014.11.015
  16. Timofeeva, M. N., "Acid Catalysis by Heteropoly Acids," Appl. Catal., A, 256(1), 19-35 (2003). https://doi.org/10.1016/S0926-860X(03)00386-7
  17. Long, D.-L., Burkholder, E., and Cronin, L., "Polyoxometalate Clusters, Nanostructures and Materials: From Self Assembly to Designer Materials and Devices," Chem. Soc. Rev., 36(1), 105-121 (2007). https://doi.org/10.1039/B502666K
  18. Hill, C. L., "Progress and Challenges in Polyoxometalate-Based Catalysis and Catalytic Materials Chemistry," J. Mol. Catal. A: Chem., 262(1), 2-6 (2007). https://doi.org/10.1016/j.molcata.2006.08.042
  19. Kozhevnikov, I. V., "Catalysis by Heteropoly Acids and Multicomponent Polyoxometalates in Liquid-Phase Reactions," Chem. Rev., 98(1), 171-198 (1998). https://doi.org/10.1021/cr960400y
  20. Richard, F., Celerier, S., Vilette, M., Comparot, J.-D., and Montouillout, V., "Alkylation of Thiophenic Compounds over Heteropoly Acid $H_3PW_{12}O_{40}$ Supported on $MgF_2$," Appl. Catal., B, 152-153, 241-249 (2014). https://doi.org/10.1016/j.apcatb.2014.01.029
  21. Chamack, M., Mahjoub, A. R., and Aghayan, H., "Cesium Salts of Tungsten-Substituted Molybdophosphoric Acid Immobilized onto Platelet Mesoporous Silica: Efficient Catalysts for Oxidative Desulfurization of Dibenzothiophene," Chem. Eng. J., 255, 686-694 (2014). https://doi.org/10.1016/j.cej.2014.06.054
  22. Jeirani, Z., Niu Catherine, H., and Soltan, J., "Adsorption of Emerging Pollutants on Activated Carbon," Rev. Chem. Eng., 33, 491-522 (2017). https://doi.org/10.1515/revce-2016-0027
  23. Chon, H., and Seo, G., "Introduction of Catalysis, 4th Edition," Hanrimwon, Seoul, (2002).
  24. Khder, A. E. R. S., Hassan, H. M. A., and El-Shall, M. S., "Acid Catalyzed Organic Transformations by Heteropoly Tungstophosphoric Acid Supported on MCM-41," Appl. Catal., A, 411-412, 77-86 (2012). https://doi.org/10.1016/j.apcata.2011.10.024
  25. Li, B., Ma, W., Liu, J., Han, C., Zuo, S., and Li, X., "Synthesis of the Well-Ordered Hexagonal Mesoporous Silicate Incorporated with Phosphotungstic Acid through a Novel Method and its Catalytic Performance on the Oxidative Desulfurization Reaction," Catal. Commun., 13(1), 101-105 (2011). https://doi.org/10.1016/j.catcom.2011.07.009
  26. Shiju, N. R., Williams, H. M., and Brown, D. R., "Cs Exchanged Phosphotungstic Acid as an Efficient Catalyst for Liquid-Phase Beckmann Rearrangement of Oximes," Appl. Catal., B, 90(3), 451-457 (2009). https://doi.org/10.1016/j.apcatb.2009.04.016