• Title/Summary/Keyword: Composites joint

Search Result 145, Processing Time 0.022 seconds

A Study on the strength of mechanically fastened composite joint using the failure area index method (파괴면적지수법을 이용한 복합재료 기계적 체결부의 강도평가에 관한 연구)

  • 전영준;최진호;권진회
    • Composites Research
    • /
    • v.16 no.5
    • /
    • pp.1-6
    • /
    • 2003
  • As the use of composites has become popular in recent years, the design of the composite joints has become a very important research area because the structural efficiency of the composite structure is determined by its joints, not by its basic structures. In this paper, presented comparisons of numerical results by the FAI(Failure area index) method[9] and measured data for a various geometric shapes and stacking sequence justify the validity of the FAI method. The FAI method is shown to produce very favorable comparisons with measured failure loads of mechanically fastened composite joints with the difference well within 9.96% for all II cases investigated.

Biomechanics of Sacroiliac Joint Dysfunction and Clinical Disease (엉치엉덩관절 통증과 임상 질환에 대한 생체역학)

  • Jeong, Seong-Gwan;Lee, Woo-Hyung;Kim, Kyung-Hwan
    • PNF and Movement
    • /
    • v.8 no.1
    • /
    • pp.41-50
    • /
    • 2010
  • Pain originating from the sacroiliac joint(SIJ) has been associated with poor performance, yet specific diagnosis of sacroiliac dysfunction(SID) has been difficult to achieve. Clinical presentation of SID appears that pain and poor performance is responsive to local analgesia of periarticular structures with poorly defined pathology, and poor performance with bony pathological changes present as a result of chronic instability. Previous research indicates that physical examination cannot diagnose SIJ pathology. Earlier studies have not reported sensitivities and specificities of composites of provocation tests known to have acceptable inter-examiner reliability. Tests based on mechanics as manual provocation for SIJ pain have formed the basis of tests used to diagnose SIJ dysfunction. In this review summary, the purpose of this study was to describe the sacroiliac tests with a model of examination, diagnosis, and management of SID. Further research is warranted to determine whether SIJ tests is reliable means of evaluating innominate impairments.

  • PDF

Analysis of the effect of preventing breakage by formation of the joint insulation structure in the coating-sheet composite waterproofing method (도막-시트 복합방수공법에서의 접합부 절연구조 형성을 통한 파단방지 효과 분석)

  • Choi, Sung-Min;Oh, Sang-Keun;Park, Jin-Sang;Kim, Dong-Bum;Park, Wan-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.4-5
    • /
    • 2021
  • In this study, in the coating-sheet composite waterproofing method, a specimen was formed to prevent the transmission of the no-node tensile stress occurring under the junction between sheets by forming an insulating structure when the junction was formed, and to compare the effect of preventing breakage with the existing common junction. For this, tensile performance evaluation was conducted. As a result of the evaluation, it was confirmed that it exhibited higher tensile strength compared to the existing joint and at the same time exhibited a large width of displacement characteristics, and thus, had an effect of preventing breakage.

  • PDF

A Study on Adhesion Characteristics of Co-cured Long Fiber Prepreg Sheet-Aluminum Hybrid Structures (동시 경화 장섬유 복합재료-알루미늄 혼성 구조물의 접착 특성 연구)

  • Lee, Sung-Woo;Chang, Seung-Hwan
    • Composites Research
    • /
    • v.31 no.1
    • /
    • pp.17-22
    • /
    • 2018
  • Long Fiber Prepreg Sheet (LFPS) has the advantages of excellent production efficiency and formability for complex shapes compared to conventional continuous fiber reinforced composites. When fibrous composites are used with different materials, joining method is important because strength of the joining part determines the strength of the hybrid structure. In this study, the adhesive joint strengths of co-cured LFPS and aluminum were evaluated under various surface treatment conditions and environmental conditions (temperature and moisture conditions). Mechanical abrasion and plasma exposure were used for the surface treatment. The adhesive joints experienced various surface treatments were tested by using single lap joint specimens. Adhesive strengths under various conditions were compared and the most appropriate condition was determined.

A Study on the Effect of Adhesion Condition on the Mode I Crack Growth Characteristics of Adhesively Bonded Composites Joints (복합재 접착 체결 구조의 접착 상태가 모드 I 균열 성장 특성에 미치는 영향에 대한 연구)

  • No, Hae-Ri;Jeon, Min-Hyeok;Cho, Huyn-Jun;Kim, In-Gul;Woo, Kyeong-Sik;Kim, Hwa-Su;Choi, Dong-Su
    • Composites Research
    • /
    • v.34 no.5
    • /
    • pp.323-329
    • /
    • 2021
  • In this paper, the characteristics of fracture in mode I loading were analyzed for adhesively bonded joints with non-uniform adhesion. The Double Cantilever Beam test was performed and mode I fracture toughness was obtained. In the case of non-uniform adhesively bonded joints, the stable crack growth sections and unstable crack growth section were shown. The fracture characteristics of each section were observed through the load-displacement curve of the DCB test and the fracture surface of the specimen. Finite Element Analysis was performed at the section based on segmented section by crack length measured through the test and using the mode I fracture toughness of each section. Through DCB test results and finite element analysis results, it was confirmed that the fracture behavior of specimens with non-uniform adhesion can be simulated.

Evaluation of Cryogenic Performance of Adhesives Using Composite-Aluminum Double Lap Joints (복합재-알루미늄 양면겹치기 조인트를 이용한 접착제의 극저온 물성 평가)

  • Kang, Sang-Guk;Kim, Myung-Gon;Kong, Cheol-Won;Kim, Chun-Gon
    • Composites Research
    • /
    • v.19 no.4
    • /
    • pp.23-30
    • /
    • 2006
  • In the development of a cryogenic propellant tank, the proper selection of adhesives to bond composite and metal liner is important for the safety of operation. In this study, 3 types of adhesives were tested for the ability to bond CFRP composites developed for cryogenic use and aluminum alloy (Al 6061-T6) for lining the tank using double-lap joint specimens. The double-lap joint specimens were tested inside an environmental chamber at room temperature and cryogenic temperature ($-150^{\circ}C$) respectively to compare the bond strength of each adhesive and fracture characteristics. The material properties with temperature of component materials of double-lap joints were measured. In addition, ABAQUS was used for the purpose of analyzing the experimental results.

A Study on Strength of the Machined Composite Key Joint (기계 가공된 복합재료 키 조인트의 강도 연구)

  • Jeong, Kang-Woo;Park, Yong-Bin;Choi, Jin-Ho;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.25 no.2
    • /
    • pp.40-45
    • /
    • 2012
  • The comparison of the numerical results with those measured by the experiment showed good agreement. The design of composite joint which is the weakest part in the composite structures has become a very important research area since the composite materials are widely used in the aircraft and machine structure. In this paper, the new composite key joints that minimize the fiber discontinuity and strength degradation of adherend were proposed and their failure loads were evaluated. The failure index and damage area method were used for the failure prediction of the composite key joint. From the tests, the failure load of the composite key joint was 93% larger than that of a mechanical joint and the key joint whose slot depth and edge length were 0.88mm and 20mm had the largest failure load. Also, the analytic failure modes by the failure index and damage area were compared with experimental failure modes.

A Study on Failure Strength of the Hybrid Composite Joint (복합재 하이브리드 조인트의 파손강도에 관한 연구)

  • Lee, Young-Hwan;Park, Jae-Hyun;Ahn, Jeoung-Hee;Choi, Jin-Ho;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.22 no.2
    • /
    • pp.7-13
    • /
    • 2009
  • With the wide application of fiber-reinforced composite material in aero-structures and mechanical parts, the design of composite joint have become a very important research area because they are often the weakest areas in composite structures. In this paper, the failure strengths of the hybrid composite joints which were composed of a combination of an adhesive joint and a mechanical joint were evaluated and predicted. The 10 hybrid joint specimens which have different w/d, e/d and adherend thickness were manufactured and tested. The damage zone theory and the failure area index method were used for the failure prediction of the adhesive joint and the mechanical joint, respectively and the hybrid joints were assumed to be failures if either of the two failure criteria was satisfied. From the results of experiments and analyses, the failure strengths of the hybrid joints could be predicted to within 25.5%.

Strengthening of bolted shear joints in industrialized ferrocement construction

  • Ismail, M.;Shariati, M.;Abdul Awal, A.S.M.;Chiong, C.E.;Chahnasir, E. Sadeghipour;Porbar, A.;Heydari, A.;Khorami, M.
    • Steel and Composite Structures
    • /
    • v.28 no.6
    • /
    • pp.681-690
    • /
    • 2018
  • This paper highlights results of some experimental work that deals with strengthening of bolted shear joints in thin-walled ferrocement structure where steel wires, bent into U-shape are considered as simple inserts around the bolt hole. The parameters investigated include the number of layers of wire mesh, edge distance of bolt hole, size and location of the inserts. Test results have shown that for small edge distance, failure occurred either in cleavage or shearing mode, and the strength of the joint increased with an increase in the edge distance. This continued up to an upper limit set by either tension or bearing failure. The experimental study further revealed that for a given edge distance the strength of a joint can significantly be enhanced by using U-inserts. The equations developed for predicting joint strength in ferrocement composites can also be modified to include the effects of the inserts with a good level of accuracy.

A Study on the Structural Design of Effective Composite Joint and Light Weight in Body Floor (Body Floor의 복합재 접합방식 및 경량화 설계에 관한 연구)

  • Kim, Hong Gun;Oh, Sang Yeob;Kim, Kwang Choul;Kim, Hyun Woo;Kwac, Lee Ku
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.6
    • /
    • pp.920-925
    • /
    • 2012
  • A study of vehicle weight lightening has been progressed to reduce the fuel consumption. In this paper, the body floor in an EV (Electric Vehicle) bus has been applied by composites as CFRP and GFRP. In order to analyse a various reliability and safety, an experiment and FEM analysis was carried out to obtain weight lightening. Especially, the joint. An effective design is obtained through an experiment as well as FEM analysis. Results of stress analysis of GFRP material showed twice as much displacement than those of CFRP material. Among three kinds of joint methods, the bond joint method is occurred to a substantial shape change in the body and floor. It is found that the rivet joints are fairly suitable for stress sustaining capability.