• Title/Summary/Keyword: Composites Material

Search Result 2,159, Processing Time 0.027 seconds

The Properties of Degradation in Epoxy Composites according to Electrical Stress

  • Park, Young-Chull;Park, Geon-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.09a
    • /
    • pp.47-51
    • /
    • 2001
  • The electrical degradation phenomena of epoxy composites to be used as a molding material for transformers were studied. The electrets were first manufactured by applying high voltages to five kinds of specimens given a mixing rate, and then TSC(Thermally Stimulated Current) values at the temperature range of $-160\sim200[^{\circ}C]$ were measured from a series of experiments. The behaviour of carrier and its origin in epoxy composites were examined, respectively, And various effects of electrical degradation on epoxy composites were also discussed in this study.

  • PDF

A Study on Composites of Ethylene-Vinyl Acetate Copolymer and Ethylene-Propylene-Diene Rubber with Aluminum Hydroxide as a Fire Retardant

  • Lee, Yu Jun;Lee, Su Bin;Jung, Jae Young;Lee, Dam Hee;Cho, Ur Ryong
    • Elastomers and Composites
    • /
    • v.51 no.2
    • /
    • pp.93-98
    • /
    • 2016
  • The composites of EVA/EPDM including aluminum trioxide (ATH) as a fire retardant were manufactured for the purpose of improving low temperature property and flame resistance in the rubbery materials. The ratio of EVA to EPDM didn't affect the flame resistance of the rubber composites. The addition of ATH resulted in increase of the flame resistance. In the evaluation of the cold resistance, the increasing EPDM content showed enhancement of cold resistance in the composites due to increasing low Tg EPDM. It was found out that tensile strengths of the composites showed a maximum value at 100 phr of ATH by reinforcing effect, but a minimum value at 200 phr of ATH owing to slippage between the flame retardant by the external stress. In the measurement of solvent resistance in tetrahydrofuran, the increasing ATH content yielded enhancement of solvent resistance by reducing swelling of the composite, and increasing EPDM content also resulted from increase of the solvent resistance by reduction of polarizability as well as increase of crosslink in the composites.

A Study on Ultrasonic Evaluation of Material Defects in Carbon/carbon Composites

  • Im, Kwang-Hee;David K. Hsu;Cha, Cheon-Seok;Sim, Jae-Ki;Yang, In-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.12
    • /
    • pp.1652-1663
    • /
    • 2002
  • It is desirable to perform nondestructive evaluation to assess material properties and part homogeneity because manufacturing of carbon/carbon (C/C) composites requires complicated and costly processes. In this work several ultrasonic techniques were applied to carbon/carbon composites for the evaluation of spatial variations in material properties that are attributable to the manufacturing process. In a large carbon/carbon composite manufactured by chemical vapor infiltration (CVI) method, the spatial variation of ultrasonic velocity was measured and found to be consistent with the densification behavior in CVI process in order to increase the density of C/C composites. Ultrasonic velocity and attenuation depend on a density variation of materials. Low frequency through-transmission scans based on both amplitude and time-of-flight of the ultrasonic pulse were used for mapping out the material property inhomogeneity These results were compared with that obtained by dry-coupling ultrasonics. Pulse-echo C-scans was used to image near-surface material property anomalies such as the placement of spacers between disks during CVI. Also, optical micrograph had been examined on the surface of C/C composites using a destructive way.

Effect of Nano/micro Silica on Electrical Property of Unsaturated Polyester Resin Composites

  • Sharma, Ram Avatar;D'Melo, Dawid;Bhattacharya, Subhendu;Chaudhari, Lokesh;Swain, Sarojini
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.1
    • /
    • pp.31-34
    • /
    • 2012
  • The addition of nano/micro silica into unsaturated polyester resin (UPR) results in the improvement of the electrical properties of Silica-UPR composites. The surface, volume resistivity, dielectric strength, dissipation factor and dry arc resistivity of nano silica-UPR composites were found to improve significantly. The effects of the nano and micro fillers in UPR have been evaluated. They are presented in this paper. To evaluate the electrical properties of the nano & micro composites, all the measurements were done as per the prescribed methods in ASTM. It was observed that the addition of nano silica improves the electrical properties as compared to micro silica. The better dispersion of silica particles in unsaturated polyester resin enhances the electrical properties of silica-UPR composites.

Analysis of Micromechanical Behavior for Fiber-Reinforced Composites (섬유 보강 복합재료의 미시역학적 거동 해석)

  • Jeong Jae Youn;Ha Sung Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.10
    • /
    • pp.1435-1450
    • /
    • 2004
  • The investigation, which includes the material homogenization and the calculation of local stress concentration of long-fibrous composites in a microscopic level, has been performed to analyze the behavior of fiber-reinforced composites by using finite element method. In order to carry out this study, the finite element models of composites have been generated by the idealized arrays as square and hexagonal-packed type. In the FE analysis, the boundary conditions of micromechanical finite element method(MFEM) have been defined and verified by comparing with the results from multi-cells, and the effective material properties of composites composed of graphite/epoxy have been also evaluated by rules of mixture. For acquiring the relation between the global and local behaviors of composites, the magnifications of strain, stress, and interfacial stress of composites subjected to a longitudinal and transverse loading respectively have been calculated. And the magnifications have been proposed as the stress concentration in the microscopic level at composite material.

Measurement of Material Properties of Composites under High Temperature using Fiber Bragg Grating Sensors (광섬유 브래그 격자 센서를 이용한 고온용 복합재료의 물성 측정)

  • 강동훈;박상욱;김수현;홍창선;김천곤
    • Composites Research
    • /
    • v.16 no.6
    • /
    • pp.41-47
    • /
    • 2003
  • Composites are widely used for aircraft, satellite and other structures due to its good mechanical and thermal characteristics such as low coefficient of thermal expansion(CTE), heat-resistance, high specific stiffness and specific strength. In order to use composites under condition of high temperature, however, material properties of composites at high temperatures must be measured and verified. In this paper, material properties of T700/Epoxy were measured through tension tests of composite specimens with an embedded FBG sensor in the thermal chamber at the temperatures of RT, $100^{\circ}$, $200^{\circ}$, $300^{\circ}$, $300^{\circ}$. Through the pre-test of an embedded optical fiber, we confirmed the embedding effects of an optical fiber on material properties of the composites. Two kinds of specimens of which stacking sequences are [0/{0}/0]$_{T}$. and [$90_2$/{0}/$90_2$]. were fabricated. From the experimental results, material property changes of composites were successfully shown according to temperatures and we confirmed that fiber Bragg grating sensor is very appropriate to strain measurement of composites under high temperature.

Sintering and Microstructure of Alumina/Mica and Spinel/Mica Composites

  • Suzuki, Sofia-Saori;Taruta, Seiichi;Takusagawa, Nobuo
    • The Korean Journal of Ceramics
    • /
    • v.4 no.4
    • /
    • pp.363-367
    • /
    • 1998
  • Alumina/mica and spinel/mica composites were fabricated by sintering of compacts containing 20 mass% fluoromica ($KMg_3AlSi_3O-{10}F_2$) glass and alumina or spinel. In both composites, mica precipitated as plate-like crystals at temperatures lower than $1300^{\circ}C$ and melted at $1300^{\circ}C$ to $1400^{\circ}C$. In alumina/mica composites, alumina and glass reacted to produce spinel, and the densification progressed by the solution-precipitation of alumina. Consequently, the glass composition changed and the mica did not precipitate at temperatures higher than $1400^{\circ}C$. However, mica precipitated after a reheating process. In spinel/mica composites, the glass composition did not change. After the mica phase melted, it recrystallized during slow cooling. The relative density reached the maximum at $1500^{\circ}C$ for alumina/mica and at $1300^{\circ}C$ spinel/mica composites, and decreased at further high temperatures.

  • PDF

A Study on Calculation of Composites Lamina Material Properties through Reverse Engineering of Light Weight Composite Car-body (경량 복합재 차체 구조의 역설계를 통한 복합재료 라미나 물성 산출 기법 연구)

  • Moon, Jin Bum;Kim, Jihoon;Jang, Hong Kyu;Park, Jisang
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • In reverse engineering, one of the main tasks is reconstructing the mechanical properties of used materials. For an isotropic material, it could be defined by a single tensile test using a coupon extracted from the structure. In contrast, CFRP composites require many tests and complex procedures to define all the material properties because CFRP is an orthotropic material and a stacked laminate. In this paper, the procedure to reconstruct composite material properties is studied by using the classical lamination theory and the test data of three different laminates from a composite structure. A sample reconstruction of composite material properties using a composite car body is introduced to verify the method.

Experimental investigation on thermal behavior, sound absorption, and flammability of natural fibre polymer composites

  • Ravi Kumar, B.;Hariharan, S.S.
    • Structural Engineering and Mechanics
    • /
    • v.76 no.5
    • /
    • pp.613-618
    • /
    • 2020
  • Exhausting oil resources and increasing pollution around the world are forcing researchers to look for new, renewable, biodegradable materials to lead sustainable development. The use of fiber reinforced composites based on natural fibres has increasingly begun as prospective materials for various engineering applications in the automotive, rail, construction and aerospace industries. The natural fiber chosen to make the composite material is plant-based fibre, e.g. jute fibre, and hemp fibre. Thermosetting polymer based Epoxy (LY556) was utilized as matrix material and The composites were produced using hand lay-up technique. The fabricated composites were tested for acoustic testing, thermo-gravimetric analysis (TGA) and flammability testing to asses sound absorption, thermal decomposition and fire resistivity of the structures. Hemp fibre composites have shown improved thermal stability over Jute fibre composites. However, the fire resistance characteristics of jute fibre composites are better as compared to hemp fibre composites. The sound absorption coefficient of composites was found to enhance with the increase of frequency.