• Title/Summary/Keyword: Composite reinforcement

Search Result 956, Processing Time 0.025 seconds

Performance Evaluation of Bending Strength of Curved Composite Glulams Made of Korean White Pine (잣나무 만곡 복합집성재의 휨강도 성능평가)

  • Song, Yo-Jin;Jung, Hong-Ju;Lee, In-Hwan;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.4
    • /
    • pp.463-469
    • /
    • 2015
  • In this study, to improve bending strength performance of Korean white pine, we made the curved composite glulam that was reinforced with glass fiber materials and larch lamina. Five types of Korean white pine curved glulams were made depending on whether they had been reinforced or not and how they had been reinforced. Type-A, reference specimen, was produced only with Korean white pine lamina, and Type-B was with larch lamina in the same thickness. Type-C was made by inserting a glass fiber cloth of textile shape between the each layer. Type-D was reinforced with two glass fiber cloths, which were placed inside and outside of the outermost lamina. Type-E was reinforced with GFRP sheet in the same way as Type-D. As a result of this bending strength test, the modulus of rupture (MOR) of Type-B, Type-C and Type-E were increased by 29%, 6%, and 48% in comparison with Type-A. However, MOR of Type-D was decreased by 2% in comparison with Type-A. In the failure modes, Type-A, Type-B and Type-C were totally fractured at the maximum load. However, load values of Type-D and Type-E decreased slowly because of reinforcement of fracture suppression, and the GFRP sheet (Type-E) had better reinforcing effect on compressive stress and tensile stress than the glass fiber cloth (Type-D).

A Study on the Development of the Repair Standards for Underground Pipelines Carrying Natural Gas (도시가스 매설배관 보수기준 개발에 관한 연구)

  • Ryou, Young-Don;Lee, Jin-Han;Jo, Young-Do
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.4
    • /
    • pp.33-43
    • /
    • 2016
  • Grinding, weld deposition, type A sleeve, type B sleeve, composite sleeve, hot tapping and clamp are used as the method to repair the buried pipelines in the United States, UK and Europe. In the event of defect to the pipeline, they have repaired the pipeline through the fitness-for-service assessments. In addition, they have guidelines for the possible repair methods to apply to each type of damage, which is occurred due to the 3rd party construction or corrosion. According to the KGS FS551, Safety Validation in Detail including ECDA(External Corrosion Direct Assessment) as one method of integrity management should be carried out for the old pipeline which supply natural gas as the middle pressure in Korea. Where a defect on the pipelines is found, on the result of Safety Validation in Detail, the pipelines should be repaired or replaced by new piping. However, there are no guidelines or regulations regarding the repair and reinforcement of pipeline, so that, cutting the damaged pipeline and replacing it as a segment of new pipe is the only way in Korea until now. We have suggested pipeline repair methods including type A, B sleeve, composite sleeve, after the survey of foreign repair method and standards including the method of United States and the United Kingdom, and after analysis of the results on pipeline repair test including type A, type B sleeve and composite sleeve.

Evaluation of Deformation Characteristics and Vulnerable Parts according to Loading on Compound Behavior Connector (복합거동연결체의 하중재하에 따른 변형 특성 및 취약부위 산정)

  • Kim, Ki-Sung;Kim, Dong-wook;Ahn, Jun-hyuk
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.4
    • /
    • pp.524-530
    • /
    • 2019
  • Purpose: In this paper, we construct a detailed three-dimensional interface element using a three-dimensional analysis program, and evaluate the composite behavior stability of the connector by applying physical properties such as the characteristics of general members and those of reinforced members Method: The analytical model uses solid elements, including non-linear material behavior, to complete the modeling of beam structures, circular flanges, bolting systems, etc. to the same dimensions as the design drawing, with each member assembled into one composite behavior linkage. In order to more effectively control the uniformity and mesh generation of other element type contact surfaces, the partitioning was performed. Modeled with 50 carbon steel materials. Results: It shows the displacement, deformation, and stress state of each load stage by the contact adjoining part, load loading part, fixed end part, and vulnerable anticipated part by member, and after displacement, deformation, The effect of the stress distribution was verified and the validity of the design was verified. Conclusion: Therefore, if the design support of the micro pile is determined based on this result, it is possible to identify the Vulnerable Parts of the composite behavior connector and the degree of reinforcement.

An accurate analytical model for the buckling analysis of FG-CNT reinforced composite beams resting on an elastic foundation with arbitrary boundary conditions

  • Aicha Remil;Mohamed-Ouejdi Belarbi;Aicha Bessaim;Mohammed Sid Ahmed Houari;Ahmed Bouamoud;Ahmed Amine Daikh;Abderrahmane Mouffoki;Abdelouahed Tounsi;Amin Hamdi;Mohamed A. Eltaher
    • Computers and Concrete
    • /
    • v.31 no.3
    • /
    • pp.267-276
    • /
    • 2023
  • The main purpose of the current research is to develop an efficient two variables trigonometric shear deformation beam theory to investigate the buckling behavior of symmetric and non-symmetric functionally graded carbon nanotubes reinforced composite (FG-CNTRC) beam resting on an elastic foundation with various boundary conditions. The proposed theory obviates the use to shear correction factors as it satisfies the parabolic variation of through-thickness shear stress distribution. The composite beam is made of a polymeric matrix reinforced by aligned and distributed single-walled carbon nanotubes (SWCNTs) with different patterns of reinforcement. The material properties of the FG-CNTRC beam are estimated by using the rule of mixture. The governing equilibrium equations are solved by using new analytical solutions based on the Galerkin method. The robustness and accuracy of the proposed analytical model are demonstrated by comparing its results with those available by other researchers in the existing literature. Moreover, a comprehensive parametric study is presented and discussed in detail to show the effects of CNTs volume fraction, distribution patterns of CNTs, boundary conditions, length-to-thickness ratio, and spring constant factors on the buckling response of FG-CNTRC beam. Some new referential results are reported for the first time, which will serve as a benchmark for future research.

Effect of Fiber Orientation and Fiber Contents on the Tensile Strength in Fiber-reinforced Thermoplastic Composites (섬유배향과 섬유함유량이 섬유강화 열가소성수지 복합재료의 인장강도에 미치는 영향)

  • Kim, Jin-Woo;Lee, Dong-Gi
    • Composites Research
    • /
    • v.20 no.5
    • /
    • pp.13-19
    • /
    • 2007
  • Fiber-reinforced thermoplastic composites not only approach almost near to the strength of thermosetting composite but also has excellent productivity, recycling property, and impact resistance, which are pointed as weaknesses of thermosetting composites. The study for strength calculation of one direction fiber-reinforced thermoplastic composites and the study measuring precisely fiber orientation distribution were presented. Need the systematic study for the data base that can predict mechanical properties of composite material and fiber orientation distribution by the fiber content ratio was not constructed. Therefore, this study was investigated what affect the fiber content ratio and fiber orientation distribution have on the strength of composites. Fiber-reinforced thermoplastic composites by changing fiber orientation distribution and the fiber content ratio were made. Tensile strength ratio of $0^{\circ}$ direction of fiber-reinforced composites increased being proportional the fiber content and fiber orientation function as change from isotropy(J=0) to anisotropy(J=1). But, tensile strength ratio of $90^{\circ}$ direction by separation of fiber filament decreased when tensile load is imposed fur width direction of reinforcement fiber length direction.

A Study on the Variation of Physical Properties on the Secondary Product of Cement by Using Crushed Stone Powder (폐석분을 사용한 시멘트 2차 제품의 물리적 특성에 관한 연구)

  • Park, Ji-Sun;Lee, Sea-Hyun;Song, Hun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.103-111
    • /
    • 2012
  • One of the basic physical properties of the hardened cement paste, the rigidity, is deteriorated during concrete matrix forming, depending on the replacement rate of the crushed stone powder, and due to drying shrinkage. Therefore, the concrete containing crushed stone powder has been limitedly used as non-structural construction material. To improve these disadvantages, a hydrothermal reaction employing method can be considered. High-temperature and high-pressure water is involved in the hydrothermal reaction in the mixing with specific materials. The rigidity improving mechanism is related to the synthesis of calcium silicate. The calcium silicate is produced through reaction between calcium compounds and the silicic acid. Various kinds of calcium silicate can be produced depending on the CaO/$SiO_2$ mole ratio, the temperature of the hydrothermal synthesis, the pressure, and the reaction time. The product of the synthesis mechanism, tobermorite crystal, plays a pivotal role for the rigidity reinforcement. The crushed stone powder, analyzed in this study, contains 50 to 60% of $SiO_2$ and 10 to 20% $Al_2O_3$. The composite rate is appropriate to create the tobermorite crystal through formation of hardened cement matrix under the hydrothermal synthetic conditions and with the CaO in the cement. Moreover, further reinforcement was promoted using the property of material under the identical density through promoting the formation of tobermorite crystal.

  • PDF

Evaluation of Static Strength of Group Stud Shear Connection in Precast Concrete Deck Bridges (프리캐스트 콘크리트 바닥판 교량의 그룹 스터드 전단연결부 강도평가)

  • Shim, Chang Su;Jeon, Seung Min;Kim, Dong Wook
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.2
    • /
    • pp.333-345
    • /
    • 2008
  • concrete deck bridges are increasingly aplied to twin- girder bridges and open-stel box girder bridges.One of the most dificult isues in the design of shear conect ors is the mater of achieving ful composite action. Many connectors in smal area require a significant section los of precast decks resulting in difficult reinforcement details. In this closer spacing than the required minimum spacing in the design codes was evaluated through static tests. Test results s howed that the ultimate strength decreased as the conector spacing was reduced. The strength enhancement was observed due to aditional reinforcement for precast slabs or for shear pockets. Thus, the design of group stud shear connection needs to anticipate failure modes and the conector failure should be induced. Based on the test results, an empirical equation consi dering stud spacing was proposed to evaluate the ultimate strength of group stud shear conection. Fatigue tests showed n o reduction in fatigue life of the group stud shear conection in the range of this research. Details of the precast decks wer e enhanced using the findings of the study.

Fabrication and Characteristics of $Al_2O_{3p}$/AC8A Composites by Pressureless Infiltration Process (무가압함침법에 의한 $Al_2O_{3p}$/AC8A 복합재료의 제조 및 특성)

  • 김재동;고성위;정해용
    • Composites Research
    • /
    • v.13 no.6
    • /
    • pp.1-8
    • /
    • 2000
  • The fabrication Process of $Al_2O_{3p}$/AC8A composites by pressureless infiltration technique and the effects of additive Mg content and volume fraction of particulate reinforcement on mechanical and wear properties were investigated. It was found that the bending strength decreased with increasing volume fraction of $Al_2O_{3p}$ particles. Whereas hardness increased with volume fraction of $Al_2O_{3p}$ particles. The decrement of strength in case of high volume fraction of $Al_2O_{3p}$ particles was attributed to high porosity level. In terms of additive Mg content, $Al_2O_{3p}$/AC8A composites containing around 5~7wt% of additive Mg indicated the highest strength, and hardness values increased with additive Mg contents. Wear resistance of AC8A alloy were improved by reinforcement of $Al_2O_{3p}$ particles especially at high sliding velocity. Wear property of $Al_2O_{3p}$/AC8A composites and AC8A alloy exhibited different aspects. $Al_2O_{3p}$/AC8A composites indicated more wear loss than AC8A alloy at slow velocity region. However a transition point of wear loss was found at middle velocity region which shows the minimum wear loss and wear loss at high velocity region exhibited almost same value as at slow velocity region, whereas wear loss of AC8A alloy almost linearly increased with sliding velocity. It was found that $Al_2O_{3p}$/AC8A composites containing $Al_2O_{3p}$ volume fraction of 20% exhibited abrasive wear surface regardless of sliding velocity and $Al_2O_{3p}$/AC8A composites containing $Al_2O_{3p}$ volume fraction of 40% showed slightly adhesive wear surface at low sliding velocity, and it progressed to severe wear as increasing the sliding velocity.

  • PDF

Analysis of Reinforcement Effect of TSL (Thin Spray-on Liner) as Supports of Tunnel by Numerical Analysis (수치해석에 의한 터널 지보재로서 TSL(Thin Spray-on Liner)의 보강 효과 분석)

  • Lee, Kicheol;Kim, Dongwook;Chang, Soo-Ho;Choi, Soon-Wook;Lee, Chulho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.151-161
    • /
    • 2017
  • A TSL (Thin Spray-on Liner) has a higher initial strength and faster construction time than conventional cementitious shotcrete. Because of its high adhesion and tensile strength, the TSL reinforced concrete show a characteristic like composite materials. In this study, to consider an application to the conventional design method, ASD (allowable stress design), numerical study was used. In the numerical analysis, material and contact properties were adopt from previous studies. Then a thickness of concrete in the tunnel was evaluated with the TSL reinforced case by the ASD concept. In other words, bending compressive stress, bending tensile stress and shearing force of the concrete were considered to determine a thickness of concrete lining by the given boundary conditions. From the numerical analysis, there was no tendency to show by the ASD because the ASD is based on the elastic theory while the TSL typically contributes to reinforcement after yielding.

Effect of Fiber Type and Combination on the Reinforcement of Heat Polymerized Denture Base Resin (섬유의 종류와 조합이 열중합 의치상 레진의 강화에 미치는 영향)

  • Yu, Sang-Hui;Kim, Young-Im
    • Journal of dental hygiene science
    • /
    • v.10 no.6
    • /
    • pp.445-450
    • /
    • 2010
  • The aim of this study was to evaluate the effect according to the fiber type and combination on the reinforcement of heat-polymerized denture base resin. The heat-polymerized resin(Vertex RS, Dentimax, Netherlands) was used in this study. Glass fiber(GL; ER 270FW, Hankuk Fiber Glass, Korea), polyaromatic polyamide fiber(PA; aramid; Kevlar-49, Dupont, U.S.A.) and ultra high molecular weight polyethylene fiber(PE, polyethylene; P.E, Dong Yang Rope, Korea) were used to reinforce the denture base resin specimens. The final size of test specimen was $64mm{\times}10mm{\times}3.3mm$. The specimens of each group were stored in distilled water at $37^{\circ}C$ for 50 hours before measurement. The flexural strength and flexural modulus were measured by an universal testing machine(Z020, Zwick, Germany) at a crosshead speed of 5 mm/min in a three-point bending mode. In this study, all fibers showed reinforcing effects on denture base resin(p<0.05). In terms of flexural strength and flexural modulus, glass fiber 5.3 vol.% showed most effective reinforcing effect on heat polymerized denture base resin. For flexural modulus, PA/GL was the highest in denture base resin specimen for hybrid FRC using two combination (p<0.05). Glass fiber 5.3 vol.% and PA/GL are considered to be applied effectively in reinforcing the heat polymerized denture base resin.