• Title/Summary/Keyword: Composite films

Search Result 531, Processing Time 0.03 seconds

Characteristics of sub-80 nm three-layered film manufactured by continuous roll-to-roll processes (연속 롤투롤 공정을 이용한 80 나노 이하의 3층 구조 필름 제조 및 특성)

  • Nam Il Kim;Geug Tae Kim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.5
    • /
    • pp.191-195
    • /
    • 2023
  • Three-layer nano-coated films in applications for the back cover of mobile cellular phones were prepared utilizing a roll-to-roll continuous process. By introducing a coating layer with a ceramic/metal/ceramic three-layer structure, the inherent reflective properties of the metals were maintained while electrically insulating properties were maintained. The thickness of the composite coating layer on a large area PET film with a length of 1,500 nm and width of 500 nm was less than 60 nm, and a uniform thickness was maintained in all areas. The transmittance according to the wavelength range (240~1600 nm) of the nanocoating film gradually increases as the wavelength increases, and is about 48 % at 1,000 nm, which is within the infrared region, and about 35.5 % at 550 nm, which is within the visible region. These results meet the required level of coated backcover (< 40 %).

Development and Application of a Novel Mammalian Cell Culture System for the Biocompatibility and Toxicity of Polymer Films and Metal Plate Biomaterials (고분자필름과 금속막 의료소재에 대한 생체적합성 및 독성 평가를 위한 새로운 세포배양시스템의 개발 및 적용)

  • Kwak, Moon Hwa;Yun, Woo Bin;Kim, Ji Eun;Sung, Ji Eun;Lee, Hyun Ah;Seo, Eun Ji;Nam, Gug Il;Jung, Young Jin;Hwang, Dae Youn
    • Journal of Life Science
    • /
    • v.26 no.6
    • /
    • pp.633-639
    • /
    • 2016
  • Biomaterials including polymer, metal, ceramic, and composite have been widely applied for medical uses as medical fibers, artificial blood vessels, artificial joints, implants, soft tissue, and plastic surgery materials owing to their physicochemical properties. However, the biocompatibility and toxicity for film- and plate-form biomaterials is difficult to measure in mammalian cells because there is no appropriate incubation system. To solve these problems, we developed a novel mammalian cell culture system consisting of a silicone ring, top panel, and bottom panel and we applied two polymer films (PF) and one metal plate (MP). This system was based on the principal of sandwiching a test sample between the top panel and the bottom panel. Following the assembly of the culture system, SK-MEL-2 cells were seeded onto Styela Clava Tunic (SCT)-PF, NaHCO3-added SCT (SCTN)-PF, and magnesium MP (MMP) and incubated at 37℃ for 24 hr and 48 hr. An MTT assay revealed that cell viability was maintained at a normal level in the SCT-PF culture group at 24 or 48 hr, although it rapidly decreased in the SCTN-PF culture group at 48 hr. Furthermore, the cell viability in the MMP culture group was very similar to that of the control group after incubation for 24 hr and 48 hr. Together, these results suggest the sandwich-type mammalian culture system developed here has the potential for the evaluation of the biocompatibility and toxicity of cells against PF- and MP-form biomaterials.

Fabrication of Vertically Oriented ZnO Micro-crystals array embedded in Polymeric matrix for Flexible Device (수열합성을 이용한 ZnO 마이크로 구조의 성장 및 전사)

  • Yang, Dong Won;Lee, Won Woo;Park, Won IL
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.4
    • /
    • pp.31-37
    • /
    • 2017
  • Recently, there has been substantial interest in flexible and wearable devices whose properties and performances are close to conventional devices on hard substrates. Despite the advancement on flexible devices with organic semiconductors or carbon nanotube films, their performances are limited by the carrier scattering at the molecular to molecular or nanotube-to-nanotube junctions. Here in this study, we demonstrate on the vertical semiconductor crystal array embedded in flexible polymer matrix. Such structures can relieve the strain effectively, thereby accommodating large flexural deformation. To achieve such structure, we first established a low-temperature solution-phase synthesis of single crystalline 3D architectures consisting of epitaxially grown ZnO constituent crystals by position and growth direction controlled growth strategy. The ZnO vertical crystal array was integrated into a piece of polydimethylsiloxane (PDMS) substrate, which was then mechanically detached from the hard substrate to achieve the freestanding ZnO-polymer composite. In addition, the characteristics of transferred ZnO were confirmed by additional structural and photoluminescent measurements. The ZnO vertical crystal array embedded in PDMS was further employed as pressure sensor that exhibited an active response to the external pressure, by piezoelectric effect of ZnO crystal.

Preparation of Cellulose Nanofibrils and Their Applications: High Strength Nanopapers and Polymer Composite Films (셀룰로오스 나노섬유의 제조 및 응용: 고강도 나노종이와 고분자복합필름)

  • Lee, Sun-Young;Chun, Sang-Jin;Doh, Geum-Hyun;Lee, Soo;Kim, Byung-Hoon;Min, Kyung-Seon;Kim, Seung-Chan;Huh, Yoon-Seok
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.3
    • /
    • pp.197-205
    • /
    • 2011
  • Cellulose nanofibrils (CNF) with 50~100 nm diameter were manufactured from micro-size cellulose by an application of a high-pressure homogenizer at 1,400 bar. High strength nanopapers were prepared over a filter paper by a vacuum filtration from CNF suspension. After reinforcing and dispersing CNF suspension, hydroxypropyl cellulose (HPC) and polyvinyl alcohol (PVA)-based composites were tailored by solvent- and film-casting methods, respectively. After 2, 4, 6 and 8 passes through high-pressure homogenizer, the tensile strength of the nanopapers were extremely high and increased linearly depending upon the pass number. Chemical modification of 1H, 1H, 2H, 2H-perfluorodecyl-triethoxysilane (PFDTES) on the nanopapers significantly increased the mechanical strength and water repellency. The reinforcement of 1, 3, and 5 wt% CNF to HPC and PVA resins also improved the mechanical properties of the both composites.

Characterizations of Sputtered PZT Films on Pt/Ti/Si Substrates. (Pt/Ti/Si 기판위에 형성시킨 PZT박막의 특성)

  • Hwang, Yu-Sang;Baek, Su-Hyeon;Baek, Sang-Hun;Park, Chi-Seon;Ma, Jae-Pyeong;Choe, Jin-Seok;Jeong, Jae-Gyeong;Kim, Yeong-Nam;Jo, Hyeon-Chun
    • Korean Journal of Materials Research
    • /
    • v.4 no.2
    • /
    • pp.143-151
    • /
    • 1994
  • On PT/Ti/Si substrates, PZT thln fllms are deposited at $300^{\circ}C$ by rf magnetron sputtering uslng a $(PbZr_{52}, Ti_{48})O_{3}$ composltc cerarnlc target. To abtaln, the stable phase, perovskltc structure, furnace annealmg techmque had been cmplo:~d In PbO amb~ent for the $550^{\circ}C$-$750^{\circ}C$ temperature ranges. On Pt(250$\AA$)/Ti(500$\AA$)/Si, Pt(1000)$\AA$/Ti(500$\AA$)/Si substrates, effects of Ti layer and Pt thickness are studled. Though thickness of the Pt layer 1s 1000$\AA$). oxygen diffusion is not prevented and accelerated by Ti layer actlng for oxygen sink sites durmg furnace annealing. The upper TI layer 1s transformed Into TIOX by oxyen dlffuslon and lower Ti layer Into silicide with in-diffused Pt. The formation of TiOx layer seems to affect the orlentatton of the PZT layer. Furnace annealed f~lm shows ferroelectr~c and electrical properties wth a remanent polarlzation of 3.3$\mu A /\textrm{cm}^2$, , coerclve fleld of 0.15MV/cm, a=571 (10kHz), leakage current 32.65$\mu A /\textrm{cm}^2$, , breakdown voltage of 0.4OMV/cm.

  • PDF

Designed of rPP/d2w®/ZnO Nanocomposite Flexible Film for Food Packaging and Characterization on Mechanical and Antimicrobial Properties (산화분해촉매를 함유한 rPP/ZnO 나노컴포지트 유연식품포장필름 제조 및 물성 특성 연구)

  • Lee, Jin-kyoung;Gil, Bo-min;Lee, Dong-jin;Lee, Ik-mo
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.24 no.1
    • /
    • pp.1-11
    • /
    • 2018
  • In this study, pro-oxidant($d2w^{(R)}$) and rPP/ZnO nanocomposite flexible films for food packaging were prepared, and their mechanical and antimicrobial properties were investigated. As a result, the carbonyl index and hydroxyl index increased with exposured time to heat and UV rays. Surface analysis showed that the addition of zinc oxide improved the dispersibility and compatibility of the polymer, so that the surface of the composite film was smooth and the zinc oxide particles were smaller than the compared film. And it kept the physical properties by heat and UV ray blocking effect, and it worked to reduce decomposition. In the antimicrobial activity test, the microbial reduction rate was 3 logs or more at the use concentration of zinc oxide. The tensile strength was increased and the elongation was decreased. Oxidative degradability of multi-layered film in UV exposured for 72 hours, the molecular weight of the film decreased by 75.6%, 1,294 g/mol Mn and 5,920 g/mol Mw. In the safety analysis of food packaging materials, we obtained that are in standard of polypropylene, a food contact material of domestic law.

Fabrication of Silane-crosslinked Proton Exchange Membranes by Radiation and Evaluation of Fuel Cell Performance (방사선을 이용한 실란 가교구조의 유/무기 복합 수소이온 교환막 제조 및 연료전지 성능 평가)

  • Lee, Ji-Hong;Sohn, Joon-Yong;Shin, Dong-Won;Song, Ju-Myung;Lee, Young-Moo;Nho, Young-Chang;Shin, Jun-Hwa
    • Polymer(Korea)
    • /
    • v.36 no.4
    • /
    • pp.525-530
    • /
    • 2012
  • In this study, silane-crosslinked organic/inorganic composite membranes were prepared by simultaneous irradiation grafting of binary monomer mixtures (styrene and 3-(trimethoxysilyl)propyl methacrylate (TMSPM)) with various compositions onto a poly(ethylene-alt-tetraethylene) (ETFE) film and followed by sol-gel processing and sulfonation to provide a silane-crosslinked structure and a proton conducting ability, respectively. The Fourier transform infrared spectroscopy (FTIR) and thermo gravimetric analysis (TGA) were utilized to confirm the crosslinking of ETFE-g-PS/PTMSPM films. The prepared membranes with similar ion exchange capacity but a different TMSPM content were selected and their membrane properties were compared. The ETFE-g-PSSA/PTMSPM membranes were characterized by water uptake, dimensional stability, and proton conductivity after sulfonation. The membrane electrode assemblies (MEA) of the prepared membranes were fabricated and their single cell performances were measured.

A Study of Electro-Optical Properties of Polyester Acrylate-Based Polymer-Dispersed Liquid Crystals Using TIZO/Ag/TIZO Multilayer Transparent Electrodes (TIZO/Ag/TIZO 다층막 투명전극을 이용한 폴리에스터 아크릴레이트 기반 고분자분산액정의 전기광학적 특성 연구)

  • Cho, Jung-Dae;Heo, Gi-Seok;Hong, Jin-Who
    • Applied Chemistry for Engineering
    • /
    • v.33 no.1
    • /
    • pp.50-57
    • /
    • 2022
  • Ti-In-Zn-O (TIZO)/Ag/TIZO multilayer transparent electrodes were prepared on glass substrates at room temperature using RF/DC magnetron sputtering. Obtained multilayer structure comprising TIZO/Ag/TIZO (10 nm/10 nm/40 nm) with the total thickness of 60 nm showed a transmittance of 86.5% at 650 nm and a sheet resistance of 8.1 Ω/□. The multilayer films were expected to be applicable for use in energy-saving smart window based on polymer-dispersed liquid crystal (PDLC) because of their transmittance properties to effectively block infrared rays (heat rays). We investigated the effects of the content ratio of prepolymer, the thickness of the PDLC coating layer, and the ultraviolet (UV) light intensity on electro-optical properties, and the surface morphology of polyester acrylate-based PDLC systems using new TIZO/Ag/TIZO transparent conducting electrodes. A PDLC cell with a thickness of 15 ㎛ PDLC layer photocured at an UV intensity of 1.5 mW/cm2 exhibited good driving voltage, favorable on-state transmittance, and excellent off-haze. The LC droplets formed on the surface of the polymer matrix of the PDLC composite had a size range of 1 to 3 ㎛ capable of efficiently scattering incident light. Also, the PDLC-based smart window manufactured using TIZO/Ag/TIZO multi-layered transparent electrodes in this study exhibited a light brown, which will have an advantage in terms of aesthetics.

CT Simulation Technique for Craniospinal Irradiation in Supine Position (전산화단층촬영모의치료장치를 이용한 배와위 두개척수 방사선치료 계획)

  • Lee, Suk;Kim, Yong-Bae;Kwon, Soo-Il;Chu, Sung-Sil;Suh, Chang-Ok
    • Radiation Oncology Journal
    • /
    • v.20 no.2
    • /
    • pp.165-171
    • /
    • 2002
  • Purpose : In order to perform craniospinal irradiation (CSI) in the supine position on patients who are unable to lie in the prone position, a new simulation technique using a CT simulator was developed and its availability was evaluated. Materials and Method : A CT simulator and a 3-D conformal treatment planning system were used to develop CSI in the supine position. The head and neck were immobilized with a thermoplastic mask in the supine position and the entire body was immobilized with a Vac-Loc. A volumetrie image was then obtained using the CT simulator. In order to improve the reproducibility of the patients' setup, datum lines and points were marked on the head and the body. Virtual fluoroscopy was peformed with the removal of visual obstacles such as the treatment table or the immobilization devices. After the virtual simulation, the treatment isocenters of each field were marked on the body and the immobilization devices at the conventional simulation room. Each treatment field was confirmed by comparing the fluoroscopy images with the digitally reconstructed radiography (DRR)/digitally composite radiography (DCR) images from the virtual simulation. The port verification films from the first treatment were also compared with the DRR/DCR images for a geometrical verification. Results : CSI in the supine position was successfully peformed in 9 patients. It required less than 20 minutes to construct the immobilization device and to obtain the whole body volumetric images. This made it possible to not only reduce the patients' inconvenience, but also to eliminate the position change variables during the long conventional simulation process. In addition, by obtaining the CT volumetric image, critical organs, such as the eyeballs and spinal cord, were better defined, and the accuracy of the port designs and shielding was improved. The differences between the DRRs and the portal films were less than 3 mm in the vertebral contour. Conclusion : CSI in the supine position is feasible in patients who cannot lie on prone position, such as pediatric patienta under the age of 4 years, patients with a poor general condition, or patients with a tracheostomy.

DIRECT PULP CAPPING WITH BONDING RESIN (접착용 레진을 이용한 유치의 직접 치수복조술에 관한 연구)

  • Cho, Hae-Sung;Choi, Yeong-Chul
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.33 no.2
    • /
    • pp.165-172
    • /
    • 2006
  • A direct pulp capping with different medicaments has been attempted for a long time. The most commonly used among those is the calcium hydroxide. In primary teeth, however, a success rate of direct pulp capping with calcium hydroxide has been reported to be lower than that of pulpotomy. The disappointing results of calcium hydroxide have prompted the search for other capping materials. Lately, several researchers suggested an application of adhesive resin-based composite systems as a capping material. They claimed that when an exposed vital pulp is capped directly with bonding resin, the pulp tissue is free of inflammation or necrosis without clinical symptoms. The aim of this study was to compare short-term effects of the bonding resin which was applied on the mechanically exposed vital pulp tissue and those of direct pulp capping with calcium hydroxide. The second objective was to compare success rates of the primary teeth which already underwent physiologic root resorption and those of the teeth which had not undergone physiologic root resorption yet, in each capping material groups. The vital, healthy pulp of forty-one primary teeth were exposed mechanically during a cavity preparation. They were divided into two groups: Group 1(n=21) underwent capping with bonding resin, and group 2(n=20) underwent capping with calcium hydroxide. Then these two groups were subdivided into two groups in each : the teeth which show physiologic root resorption and the teeth without root resorption. All of the sample teeth were restored with composite resin. Clinical evaluations such as percussion test, ice test, EPT, were recorded and also before- and after- standard x-ray films were compared and evaluated to decide whether the case was successful or not. Evaluation was performed at least 3 months after the capping materials. The results were as follows 1. There was no difference in success rate between group 1 and group 2. 2. Success rate of the teeth with physiologic root resorption was higher than that of the teeth without physiologic root resorption in group 1 and group 2. 3. There was no difference in success rate between anterior teeth and posterior teeth.

  • PDF