• Title/Summary/Keyword: Composite Layer

Search Result 1,604, Processing Time 0.029 seconds

The Comparative Study on Attached Performance of the Rubber Asphalt Membrane-Sheet Composite Waterproof by Difference of the Specific Gravity of the Petroleum Resin (석유수지 비중차를 이용한 고무아스팔트 도막-시트 복합방수의 부착성능 비교 연구)

  • Yoon, Sung Hwan;Park, Wan Goo;Kim, Dong Bum;Park, Jin Sang;Oh, Sang Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.130-131
    • /
    • 2017
  • The combined waterproofing technique, which forms the waterproofing layer of two or more substances, is characterized by forming a waterproof layer, which is characterized by the formation of waterproof layers and the thickness of the waterproofing layer is inherently formed. In this study, it is intended to verify the integrity of the material through the manufacture of materials for special purpose waterproofing methods, primarily for the manufacture of composite waterproofing materials and composite waterproofing methods using cement materials and materials.

  • PDF

Nonlinear damping and forced vibration analysis of laminated composite plates with composite viscoelastic core layer

  • Youzera, Hadj;Ali, Abbache;Meftah, Sid Ahmed;Tounsi, Abdelouahed;Hussain, Muzamal
    • Steel and Composite Structures
    • /
    • v.44 no.1
    • /
    • pp.91-104
    • /
    • 2022
  • The purpose of the present work is to study the parametric nonlinear vibration behavior of three layered symmetric laminated plate. In the analytical formulation; both normal and shear deformations are considered in the core layer by means of the refined higher-order zig-zag theory. Harmonic balance method in conjunction with Galerkin procedure is adopted for simply supported laminate plate, to obtain its natural and damping properties. For these aims, a set of complex amplitude equations governed by complex parameters are written accounting for the geometric nonlinearity and viscoelastic damping factor. The frequency response curves are presented and discussed by varying the material and geometric properties of the core layer.

Fabrication of AZ31/CNT Surface Composite by Friction Stir Processing (마찰교반공정에 의한 AZ31/CNT 표면 복합재료 제조)

  • Kim, Jae-Yeon;Lee, Seung-Mi;Hwang, Jung-Woo;Byeon, Jai-Won
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.28 no.6
    • /
    • pp.315-321
    • /
    • 2015
  • Friction stir processing (FSP) was applied to fabricate AZ31/CNT (Carbon Nano Tube) surface composite for improvement of surface hardness of AZ31 Mg-based alloy. The effects of traverse speed of rotating tool and volume fraction of CNT (i.e., groove depth of 3 mm and 4 mm) on the soundness and hardness of the composite layer were investigated. Multi-walled CNTs were fully filled in a machined groove and stirring tool was rotated at the speed of 1400 rpm. Only under the tool traverse speed of 25 mm/min for the specimen with a groove depth of 3 mm, surface composite layer with no defect was successfully produced. Increased hardness of about 35% was observed in the composite layer.

Blast resistance of a ceramic-metal armour subjected to air explosion: A parametric study

  • Rezaei, Mohammad Javad;Gerdooei, Mahdi;Nosrati, Hasan Ghaforian
    • Structural Engineering and Mechanics
    • /
    • v.74 no.6
    • /
    • pp.737-745
    • /
    • 2020
  • Nowadays, composite plates are widely used as high-strength structures to fabricate a dynamic loading-resistant armours. In this study, the shock load is applied by an explosion of spherical TNT charge at a specified distance from the circular composite plate. The composite plate contains a two-layer ceramic-metal armour and a poly-methyl methacrylate (PMMA) target layer. The dynamic behavior of the composite armour has been investigated by measuring the transferred effective stress and maximum deflection into the target layer. For this purpose, the simulation of the blast loading upon the composite structure was performed by using the load-blast enhanced (LBE) procedure in Ls-Dyna software. The effect of main process parameters such as the thickness of layers, and scaled distance has been examined on the specific stiffness of the structure using response surface method. After validating the results by comparing with the experimental results, the optimal values for these parameters along with the regression equations for transferred effective stress and displacement to the target have been obtained. Finally, the optimal values of input parameters have been specified to achieve minimum transferred stress and displacement, simultaneously with reducing the weight of the structure.

The bearing capacity of monolithic composite beams with laminated slab throughout fire process

  • Lyu, Junli;Zhou, Shengnan;Chen, Qichao;Wang, Yong
    • Steel and Composite Structures
    • /
    • v.38 no.1
    • /
    • pp.87-102
    • /
    • 2021
  • To investigate the failure form, bending stiffness, and residual bearing capacity of monolithic composite beams with laminated slab throughout the fire process, fire tests of four monolithic composite beams with laminated slab were performed under constant load and temperature increase. Different factors such as post-pouring layer thickness, lap length of the prefabricated bottom slab, and stud spacing were considered in the fire test. The test results demonstrate that, under the same fire time and external load, the post-pouring layer thickness and stud spacing are important parameters that affect the fire resistance of monolithic composite beams with laminated slab. Similarly, the post-pouring layer thickness and stud spacing are the predominant factors affecting the bending stiffness of monolithic composite beams with laminated slab after fire exposure. The failure forms of monolithic composite beams with laminated slab after the fire are approximately the same as those at room temperature. In both cases, the beams underwent bending failure. However, after exposure to the high-temperature fire, cracks appeared earlier in the monolithic composite beams with laminated slab, and both the residual bearing capacity and bending stiffness were reduced by varying degrees. In this test, the bending bearing capacity and ductility of monolithic composite beams with laminated slab after fire exposure were reduced by 23.3% and 55.4%, respectively, compared with those tested at room temperature. Calculation methods for the residual bearing capacity and bending stiffness of monolithic composite beams with laminated slab in and after the fire are proposed, which demonstrated good accuracy.

A Study on Partial Discharge Propeties of Interface Layer in-Mica-Epoxy Composite Material (마이카-에폭시 복합절연계 계면층의 부분방전 특성에 관한 연구)

  • 이은학;김태성;박종건;이덕출
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1991.10a
    • /
    • pp.83-89
    • /
    • 1991
  • The partial discharge properties of interface layer in Mica-Epoxy composite, which has been mainly used for the coil insulating material of high voltage machinery, are different from those of resins due to the abnormal interface layer to be presented between inorganic material and resin. Accordingly, the study on discharge of interface in composite insulting system is strongly requsted for not only an increasing of insulating strength, but also the basical information of diagnosis system for high voltage equipment. As a result, it has been confirmed that the interface is an abnormal resin layer and the contact states at interface is depended upon the density of silane aqueous solution. Pulse frequency at abnormal interface shows a linear increasing with enlargement of discharge quantity. Whereas, in case of normal interface, pulse frequency property represents exponential increasing at the point of saturating. A life model can be diagramed from results of time dependance of skewness, and a survival life time can be quantified from the life model suggested.

Vibration and stability of composite cylindrical shells containing a FG layer subjected to various loads

  • Sofiyev, A.H.
    • Structural Engineering and Mechanics
    • /
    • v.27 no.3
    • /
    • pp.365-391
    • /
    • 2007
  • The vibration and stability analysis is investigated for composite cylindrical shells that composed of ceramic, FGM, and metal layers subjected to various loads. Material properties of FG layer are varied continuously in thickness direction according to a simple power distribution in terms of the ceramic and metal volume fractions. The modified Donnell type stability and compatibility equations are obtained. Applying Galerkin's method analytic solutions are obtained for the critical parameters. The detailed parametric studies are carried out to study the influences of thickness variations of the FG layer, radius-to-thickness ratio, lengths-to-radius ratio, material composition and material profile index on the critical parameters of three-layered cylindrical shells. Comparing results with those in the literature validates the present analysis.

Effect of Composite Conductor on Characteristics of Electric Double Layer Capacitor (전기이중층 커패시터의 특성에 미치는 혼성 도전재의 영향)

  • 김익준;이선영;문성인
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.1
    • /
    • pp.107-111
    • /
    • 2004
  • This work describes the effect of composite conductor on the characteristics of electric double layer capacitor. Test cell, which was fabricated with conducting composite consisted of 80% of SPB and 20% of VGCF, exhibits the better tate capability and the lower resistance than those of the cells fabricated with single electronic conductor. These enhanced properties could be related with the decrease of contact resistance between the activated carbon powders.

Damping Analysis of Pretwisted Composite Plates with Viscoelastic Layer (점탄성층을 갖는 비틀린 복합재판의 감쇠해석)

  • 이덕규
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.39-44
    • /
    • 2002
  • A three node triangular element with drilling rotations incorporating Improved Layerwise Zig-zag Theory(HZZT) is developed to analyze the vibration of spinning pretwisted composite blades with embedded damping layer. Matching conditions at the interfaces between the damping material and the border material are enforced by setting the shear forces matched and different shear strains along the interfaces. The natural frequencies and modal loss factors of cantilevered pretwisted composite blade with damping core are calculated with the present triangular element enforcing the matching conditions and compared to experimental results and MSC/NASTRAN results using a layered combination of plate and solid elements.

  • PDF

Effect of Elastic/Plastic Mismatch on the Contact Crack Initiation in Asymmetric Layered Composite (층상형 비대칭성 복합재료의 탄성/소성 불일치가 접촉 균열의 개시에 미치는 영향)

  • Kim, Sang-Kyum;Lee, Kee-Sung
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.195-198
    • /
    • 2005
  • The role of elastic/plastic mismatch on the contact crack initiation is investigated for designing desirable surface-coated asymmetric layered composites. Various layered composites such as $Si_3N_4$ ceramics on $Si_3N_4+BN$ composite, soda-lime glass on various substrates with different elastic modulus for the analysis. Spherical indentation is conducted for producing contact cracks from the surface or interface between the coating and the substrate layer. A finite element analysis of the stress fields in the loaded layer composites enables a direct correlation between the damage patterns and the stress distributions. Implications of these conclusions concerning the design of asymmetric layered composites indicate that the elastic modulus mismatch is one of the important parameter for designing layered composite to prevent the initiation of contact cracks.

  • PDF