• 제목/요약/키워드: Composite Hurwitz polynomial ring

Search Result 4, Processing Time 0.018 seconds

FACTORIZATION IN THE RING h(ℤ, ℚ) OF COMPOSITE HURWITZ POLYNOMIALS

  • Oh, Dong Yeol;Oh, Ill Mok
    • Korean Journal of Mathematics
    • /
    • v.30 no.3
    • /
    • pp.425-431
    • /
    • 2022
  • Let ℤ and ℚ be the ring of integers and the field of rational numbers, respectively. Let h(ℤ, ℚ) be the ring of composite Hurwitz polynomials. In this paper, we study the factorization of composite Hurwitz polynomials in h(ℤ, ℚ). We show that every nonzero nonunit element of h(ℤ, ℚ) is a finite *-product of quasi-primary elements and irreducible elements of h(ℤ, ℚ). By using a relation between usual polynomials in ℚ[x] and composite Hurwitz polynomials in h(ℤ, ℚ), we also give a necessary and sufficient condition for composite Hurwitz polynomials of degree ≤ 3 in h(ℤ, ℚ) to be irreducible.

COMPOSITE HURWITZ RINGS AS ARCHIMEDEAN RINGS

  • Lim, Jung Wook
    • East Asian mathematical journal
    • /
    • v.33 no.3
    • /
    • pp.317-322
    • /
    • 2017
  • Let $D{\subseteq}E$ be an extension of integral domains with characteristic zero, I be a nonzero proper ideal of D, and let H(D, E) and H(D, I) (resp., h(D, E) and h(D, I)) be composite Hurwitz series rings (resp., composite Hurwitz polynomial rings). In this article, we show that H(D, E) is an Archimedean ring if and only if h(D, E) is an Archimedean ring, if and only if ${\bigcap}_{n{\geq}1}d^nE=(0)$ for each nonzero nonunit d in D. We also prove that H(D, I) is an Archimedean ring if and only if h(D, I) is an Archimedean ring, if and only if D is an Archimedean ring.

Composite Hurwitz Rings Satisfying the Ascending Chain Condition on Principal Ideals

  • Lim, Jung Wook;Oh, Dong Yeol
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.4
    • /
    • pp.1115-1123
    • /
    • 2016
  • Let $D{\subseteq}E$ be an extension of integral domains with characteristic zero, I be a nonzero proper ideal of D and let H(D, E) and H(D, I) (resp., h(D, E) and h(D, I)) be composite Hurwitz series rings (resp., composite Hurwitz polynomial rings). In this paper, we show that H(D, E) satisfies the ascending chain condition on principal ideals if and only if h(D, E) satisfies the ascending chain condition on principal ideals, if and only if ${\bigcap}_{n{\geq}1}a_1{\cdots}a_nE=(0)$ for each infinite sequence $(a_n)_{n{\geq}1}$ consisting of nonzero nonunits of We also prove that H(D, I) satisfies the ascending chain condition on principal ideals if and only if h(D, I) satisfies the ascending chain condition on principal ideals, if and only if D satisfies the ascending chain condition on principal ideals.